

UNIVERSITY OF PARIS SUD (XI)

Alternative Approaches to Improve

Performance without ILP

A Thesis submitted to the

UNIVERISTY OF PARIS SUD (XI)

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Computer Science

by

Sami YEHIA

Defended on September 22, 2004

Thesis Jury

André SEZNEC IRISA/INRIA Reviewer
Sanjay PATEL University of Illinois at Urbana-Champaign Reviewer
Marc DURANTON Philips Research Examiner
Olivier TEMAM Université Paris XI Director

UNIVERSITÉ DE PARIS SUD (XI)
U.F.R SCIENTIFIQUE D’ORSAY

THÈSE
présentée

pour obtenir

Le GRADE de DOCTEUR EN SCIENCES
DE L’UNIVERSITÉ PARIS XI ORSAY

SPÉCIALITÉ: INFORMATIQUE

par

Sami YEHIA

SUJET: Approches Alternatives pour Améliorer

les Performances en l’Absence de

Parallélisme d’Instructions

Soutenue le 22 septembre 2004 devant le jury composé de

André SEZNEC IRISA/INRIA Rapporteur
Sanjay PATEL University of Illinois at Urbana-Champaign Rapporteur
Marc DURANTON Philips Research Examinateur
Olivier TEMAM Université Paris XI Directeur

Face à la roche, le ruisseau l’emporte toujours,
non pas par la force mais par la persévérance.

H. Jackson Brown

A ma chère famille,
Hasnaa et Noureldine.

Remerciements

Cette thèse a été préparée au Laboratoire de Recherche en Informatique (LRI) à
L’université Paris-Sud (XI) entre septembre 1999 et septembre 2004 sous la direc-
tion d’Olivier Temam.

Je voudrais tout d’abord remercier Olivier Temam pour m’avoir soutenu durant
mon DEA et mes quatre années de thèse. Je veux surtout le remercier pour sa
disponibilité, son écoute et surtout ses directions et conseils sans lesquels ce travail
n’aurait pas abouti de la sorte. Au-delà de la thèse, je souhaite surtout le remercier
pour nous avoir appris que la recherche, c’est surtout beaucoup de persévérance,
d’humilité et de générosité.

Je tiens à exprimer ma gratitude pour l’honneur que m’a fait chaque membre
de mon jury. Je souhaite remercier doublement André Seznec pour avoir présidé le
jury et pour avoir rapporté la thèse. Je veux surtout remercier Sanjay Patel qui
nous fit un grand honneur de rapporter la thèse et d’être membre du jury malgré le
long voyage. Merci à Marc Duranton pour avoir participé à mon jury et pour ses
conseils et directions pour la continuation de ce travail. Je veux encore souligner
combien la lecture attentive et minutieuse de la thèse de la part de chaque membre
du jury, ainsi que leurs commentaires, me furent précieux. Je tiens aussi à remercier
Jean-Franois Collard à HP Labs pour ses contributions ainsi que son soutien durant
la dernière ligne droite de la rédaction.

Merci à tous les membres de l’équipe micro-architecture au LRI et ALCHEMY à
l’INRIA-Futurs. Je veux particulièrement remercier Alexandre Farcy pour m’avoir
donné beaucoup de son temps et de ses conseils dans de longues discussions pendant
ma thèse. Merci à Nathalie Drach-Temam pour avoir toujours été à l’écoute et pour

i

ii

ses conseils précieux. Merci à David Parello et Gilles Mouchard pour tout le temps,
la bonne humeur et parfois les dures périodes de doute que l’on a partagé. Je veux
aussi remercier Frederic Gruau et Daniel Gracia Pérez et leur exprimer combien ce
fut un plaisir de partager le bureau.

Le plus difficile à faire est de finalement remercier les êtres qui me sont les plus
chers, tant ma reconnaissance envers eux est immense, et qui sans eux, aucune
réussite n’aurait été possible. Je veux en première place remercier mon épouse,
Hasnaa, qui a tant enduré et supporté pendant ces années de thèse et aussi pour
tout l’amour et le soutien inconditionnel qu’elle m’a donné dans les moments les plus
difficiles. Je veux aussi remercier mon fils Noureldine pour, sans toujours le savoir,
avoir fait preuve de patience et d’amour quand je n’étais pas toujours disponible
pour lui. Et last but not least, je veux remercier du fond de mon cœur mon père,
qui fut toujours mon seul exemple, pour tout le soutien, l’éducation, et surtout
l’amour qu’il m’a donné pendant toute ma vie, et surtout pour m’avoir appris que
l’honnêteté, le travail dur et la persévérance sont les seuls outils pour bâtir une vie
solide et heureuse.

Je souhaite à la fin remercier ma maman, qui malheureusement n’aura pas
l’occasion de lire ces lignes, et lui dire combien son amour, ses sacrifices et son
affection sont toujours resté mes principales sources d’énergie et d’espoir dans ma
vie.

Abstract

Current integration technologies and advances in semiconductor manufacturing
open the way to an unprecedented number of transistors on a single processor
die. Still, few approaches address applications that have complex data struc-
tures or irregular data access patterns. Integer applications particularly suffer
from such properties.

The main bottlenecks lying in non-numeric applications are the low ILP
and irregular data structures that leads to irregular memory accesses having
low spatial locality.

In this thesis we propose alternative approaches to exploit on-chip space and
reduce the memory wall effect. For codes that have little ILP, we propose a
novel approach that collapses dependent instructions to functions that execute
independently and in parallel.

Because the collapsing approach is limited by dependent memory accesses,
we propose the ”load squared”, an approach that improves performance of de-
pendent loads that have high miss ratios by adding logic closer to memory. We
also investigate a generalization of this concept by presenting a decoupled archi-
tecture associated with a language extension that explicitly separates execution
from data accesses.

iii

Résumé

La possibilité d’intégrer plus d’un milliard de transistors dans un processeur
offre un potentiel inégalé pour la haute performance. L’exploitation de cette
immense capacité d’intégration est conditionnée par la quantité de parallélisme
que l’on peut extraire. Les processeurs superscalaires actuels exploitent le par-
allélisme d’instructions afin d’exécuter plusieurs instructions par cycle, ainsi
que le parallélisme de données en exécutant la même instruction sur plusieurs
données en parallèle. Cependant, pour certain codes, notamment les SPECINT
2000, les performances obtenues sont loin des performances crêtes des pro-
cesseurs, cet écart est principalement dû au manque de parallélisme ainsi qu‘à
l’irrégularité de l’application et des structures de données utilisées.

Dans cette thèse nous proposons plusieurs méthodes pour pallier au problème
du manque de parallélisme ainsi que le problème des accès mémoires des struc-
tures de données irrégulières, notamment les structures de données châınées.

Dans un premier temps nous proposons un nouveau mécanisme qui traite
les séquences d’instructions dépendantes qui contiennent peu de parallélisme,
en les écrasant sous forme de fonctions et en les exécutant sur une unité re-
configurable.

L’extraction de fonctions étant limitée par la présence de châınes
d’instructions de chargement dépendantes, nous proposons une méthode qui
permet d’accélérer les instructions de chargement indirectes en migrant le cal-
cul d’adresse plus proche de la mémoire (typiquement dans le contrôleur).

Finalement, nous étudions la possibilité d’explicitement migrer de
plus grandes parties de l’application vers une mémoire intelligente à l’aide
d’une extension du langage C et d’une architecture découplée.

v

Contents

I Présentation en Français 1

I.1 Introduction . 1

I.1.1 Contributions . 1

I.1.2 Organisation de la thèse . 2

I.2 Exploitation de l’espace pour plus de calcul 2

I.2.1 Les architectures reconfigurables 2

I.2.2 Les architectures de cellules 3

I.2.3 Conclusion . 4

I.3 Extractions de fonctions à partir d’une séquences d’instructions . . . 4

I.3.1 Principes . 4

I.3.2 Potentiel et limitations . 6

I.3.3 Implémentation . 6

I.3.4 Conclusion . 7

I.4 Double chargement: une méthode pour réduire la latence des charge-
ments de donnée indirectes . 7

I.4.1 Principes et implémentation 8

I.4.2 Evaluation . 9

I.4.3 Perspective: Migration des calculs vers la mémoire 10

I.5 Conclusions . 13

1 Introduction 15

1.1 Computer Architecture Challenges 15

1.2 Contributions . 16

1.3 Thesis Organization . 16

vii

viii CONTENTS

2 Exploiting On-chip Space for Computations 19

2.1 Reconfigurable Architectures . 19
2.1.1 PRISC . 20

2.1.2 OneChip . 21

2.1.3 DISC: A Dynamic Instruction Set Computer 22

2.1.4 PipeRench . 23

2.1.5 The Chimaera architecture 24

2.1.6 The Garp architecture . 25

2.1.7 Summary of reconfigurable architectures 27

2.2 Cell Architectures . 27

2.2.1 RaPiD : Reconfigurable Pipelined Datapaths 28

2.2.2 Raw machines . 29

2.2.3 GPA: Grid Processor Architectures 30

2.3 Problems and Limitations . 33

3 From Sequences of Dependent Instructions to Functions: An Ap-

proach for Improving Performance without ILP or Speculation 35

3.1 Introduction . 35

3.2 Principles . 36

3.3 Experimental Framework . 40

3.4 Potential of the Approach . 41

3.4.1 Potential performance improvements 41

3.4.2 Analyzing and overcoming the limitations of the approach . . 42

3.5 Implementation . 49

3.5.1 Generating DFG and functions 49

3.5.2 Hardware implementation of functions 52

3.5.3 Implementing functions using the rePLay hardware framework 53

3.5.4 Performance analysis of the implementation 57

3.6 Conclusions . 61

4 Load Squared: Adding Logic Close to Memory to Reduce the La-

tency of Indirect Loads with High Miss Ratios 63

4.1 Introduction . 63

4.2 Related Work . 65

4.2.1 Linked data structures traversal. 65

4.2.2 Memory-side logic. 66

4.2.3 Intelligent memories. 67

4.3 Principles . 70

4.3.1 Detecting and issuing Load Squared 73
4.4 Experimental Framework . 75

CONTENTS ix

4.5 Performance Evaluation . 76
4.5.1 Load Squared potential . 76
4.5.2 Efficiency of load predictors 77
4.5.3 Performance results . 79

4.6 Perspectives: Explicitly Migrating Memory Computations Closer to
Memory. 80
4.6.1 Decoupled architectures . 81
4.6.2 The Data Structures Conscious Machine (DSCM) 83

5 Conclusions and Perspectives 87

5.1 Summary . 87
5.2 Perspectives . 88

A The DSCM Architecture 89

A.1 The DSCM using intelligent memory 89
A.2 The single-processor DSCM architecture 92
A.3 DSCM instruction set extension . 92
A.4 Methodology and Experimental Results 95

Bibliography 99

List of Figures

I.1 Example de fontions. 5

I.2 Opérateur matériel. 5

I.3 Architecture. 7

I.4 Double chargement. 8

I.5 Détection de double chargement. 9

I.6 DSCM: List châınée. 11

I.7 Architecture DSCM. 12

2.1 PRISC architecture. 20

2.2 OneChip architecture. 21

2.3 DISC linear hardware space. 22

2.4 Hardware virtualization in PipeRench. 23

2.5 The overall Chimaera architecture. 24

2.6 Garp compiler’s inner process. 26

2.7 RaPiD architecture. 28

2.8 RaPiD-C. 29

2.9 A Raw microprocessor. 30

2.10 GPA. 31

2.11 TRIPS architecture. 32

2.12 D-morph frame management. 32

3.1 An example of instruction collapsing. 37

3.2 Translating function r3 into a hardware operator. 39

3.3 Phases of the optimization engine. 41

3.4 Different possible DFG shapes. 41

3.5 Theoretical speedup for different trace sizes. 42

xi

xii LIST OF FIGURES

3.6 DFG height distribution. 43
3.7 Distributions of cuts. 43

3.8 Cumulative distribution of the number of inputs per function. 44
3.9 Impact of the number of inputs on the theoretical speedup. 45

3.10 Percentage of loads. 45

3.11 Average depth of loads. 47
3.12 Distribution of load depth among all load cuts. 47

3.13 Percentage of non-collapsible instructions. 48
3.14 Cuts because of carries from upper significant bits. 48

3.15 Effect of relaxing the upper significant carries constraints. 48
3.16 Function generation. 50

3.17 Function Generation Engine: generating bit 2 of node n2. 51
3.18 Function Repository Table (FRT). 51

3.19 Implementation of functions. 52
3.20 The core architecture. 54

3.21 Average frame size. 55
3.22 Dynamic instructions coverage. 55

3.23 Local speedup. 56
3.24 Global speedup. 56

3.25 Combining instruction collapsing with perfect address prediction. . . 58
3.26 Combining instruction collapsing with perfect cache. 59

3.27 Combining instruction collapsing with perfect RePLay. 59
3.28 Alpha IPC (1). 60

3.29 Alpha IPC (2). 61

4.1 Lisp processor architecture. 66

4.2 The VIRAM architecture. 67
4.3 Smart memories architecture. 68

4.4 Active Page architecture. 69

4.5 Load squared architecture. 70
4.6 Predicting and issuing load squared. 72

4.7 Load predictors. 73
4.8 Potential loads squared and Miss/Miss occurrences. 77

4.9 Load prediction rate. 78
4.10 Non-speculative load prediction rate. 78

4.11 Percentage of load squared. 79
4.12 Speedup obtained with the load squared mechanism. 80

4.13 A decoupled architecture. 81
4.14 The HiDISC architecture. 82

4.15 List traversal in DSCM. 84

LIST OF FIGURES xiii

4.16 Tree traversal in DSCM. 85

A.1 The DSCM architecture. 90
A.2 A single-processor DSCM architecture. 91
A.3 ALPHA instruction set extension for the DSCM architecture. 93
A.4 List traversal example. 94
A.5 Matrix multiplication in Decoupled C. 96
A.6 List traversal speedup for different value of overlapped work (W). . . 97
A.7 Matrix multiplication speedup for different sizes (N). 97

Chapter I
Présentation en Français

I.1 Introduction

La possibilité d’intégrer plus d’un milliard de transistors dans un processeur offre
un potentiel inégalé pour la haute performance. L’exploitation de cette immense ca-
pacité d’intégration est conditionnée par la quantité de parallélisme que l’on peut ex-
traire. Les processeurs superscalaires actuels exploitent le parallélisme d’instructions
afin d’exécuter plusieurs instructions par cycle, ainsi que le parallélisme de donnée en
exécutant la même instruction sur plusieurs données en parallèle. Cependant, pour
certain codes, notamment les SPECINT 2000 [Hen00], les performances obtenues
sont loin des performances crêtes des processeurs, cet écart est principalement dû à
l’irrégularité de l’application et des structures de données utilisées. Cette irrégularité
empêche l’obtention de hautes performances pour deux raisons principales:

• L’existence de longues châınes d’instructions dépendantes empêchant leur
exécution en parallèle.

• L’irrégularité des structures de données empêche le chargement (ou le
préchargement) des données en parallèle. Ce problème est surtout aggravé
par l’existence de longues châınes d’instructions de chargement dépendantes
très fréquentes dans les structures de données châınées.

Dans cette thèse nous proposons plusieurs méthodes pour réduire l’effet de ces deux
problèmes.

I.1.1 Contributions

Nous proposons dans cette thèse 3 contributions majeures:

1

2 PRÉSENTATION EN FRANÇAIS I.2

• Nous proposons un nouveau mécanisme qui traite les séquences d’instructions
dépendantes qui contiennent peu de parallélisme, en les écrasant sous forme
de fonctions et en les exécutant sur une unité reconfigurable.

• L’extraction en fonctions étant limitée par la présence de châınes d’instructions
de chargement dépendantes, nous proposons une méthode qui permet d’accélérer
les instructions de chargement indirectes en migrant le calcul d’adresse plus
proche de la mémoire (typiquement dans le contrôleur).

• Finalement, nous étudions la possibilité d’explicitement migrer de plus grandes
parties de l’application vers une mémoire intelligente à l’aide d’une extension
du langage C et d’une architecture découplée.

I.1.2 Organisation de la thèse

Le Chapitre 1 introduit les motivations ainsi que les contributions de la thèse. Dans
le Chapitre 2, nous présentons un état de l’art des différentes approches et archi-
tectures qui exploitent la surface de la puce différemment, en dédiant plus d’espace
pour le calcul. Le Chapitre 3 présente une approche alternative pour améliorer les
performances des séquences d’instructions dépendantes. Dans le Chapitre 4, nous
présentons les load squared ou les doubles chargements, une méthode qui permet
d’accélérer deux instructions de chargements dépendantes ne se trouvant pas dans
les caches. Comme perspective nous introduisons aussi dans ce chapitre une ap-
proche dans laquelle nous découplons explicitement le calcul des accès de données
via une extension du langage C. Nous concluons dans le Chapitre 5. Nous résumons
si dessous chaque partie de la thèse.

I.2 Exploitation de l’espace pour plus de calcul

Dans les processeurs actuels, la plus grande partie de la puce est plutôt dédiée
aux différents mécanismes de pipeline, spéculation, préchargement et chargement
de données. Cependant, de nouvelles architectures émergentes proposent d’utiliser
l’espace sur la puce différemment. Principalement, ces architectures cherchent à
dédier plus d’espace sur la puce au calcul même, et ceci soit a travers des unités de
calcul configurables ou à travers des grilles de processeurs ou de cellules simples sur
lesquels est distribuée l’application.

I.2.1 Les architectures reconfigurables

Dans cette partie, nous décrivons un état de l’art des architectures reconfigurables.
Les architectures reconfigurables offrent un compromis entre les performances des

I.2 EXPLOITATION DE L’ESPACE POUR PLUS DE CALCUL 3

Architecture Sélection Compilateur Granularité Interface Extension du
des calculs mémoire jeu d’instructions

PRISC Profilage Oui Branchements Non Une instruction
simples

OneChip Codés Non Toute fonction Direct Une instruction
à la main

CHIMAERA Analyse Oui Branchements Non RFUOP
des codes simples

PipeRench Analyse Oui Bloques basics Non Jeux d’instruction
des codes spécifique

DISC Codés Non fonctions Direct Non existant
à la main fonctions

Garp Profilage Oui Branchements Direct Quelques
simples instructions

et hyper bloques

Table I.1: Architectures Reconfigurables.

circuits à applications spécifiques (ASIC) et la flexibilité des architectures générales.
L’architecture PRISM [Ath93] est une des premières propositions qui utilisent un
co-processeur reconfigurable pour accélérer l’exécution.

L’architecture PRISC [Raz94] est la première à proposer des unités fonction-
nelles reconfigurables dans un processeur RISC. Une instruction spéciale pointe vers
la configuration appropriée stockée dans la mémoire. Une approche similaire est
proposée dans OneChip [Wit96], sauf que l’unité reconfigurable est implémentée
hors de la puce, offrant une interface directe avec la mémoire. L’architecture DISC
[Wir95] propose une unité reconfigurable séparée supportant une reconfiguration
dynamique. PipeRench [Gol00] est une architecture qui utilise un pipeline di-
mensionnable d’unités reconfigurables. Finalement les architectures CHIMAERA
[Hau97a] et Garp [Hau97b] proposent en plus d’une architecture reconfigurable, cha-
cune un compilateur générant les configurations à partir d’un code C. L’approche
CHIMAERA en particulier propose des unités fonctionnelles dans un processeur su-
perscalaire qui exécutent les configurations générées par le compilateur. La Table I.1
résume les propriétés des différentes architectures reconfigurable.

I.2.2 Les architectures de cellules

Les architectures de cellules dédient plus d’espace au calcul en exécutant des régions
de codes sur une grille ou une structures de processeurs relativement simples (non
reconfigurables en général). Ainsi, l’architecture RaPiD est une architecture qui
implémente un pipeline de cellules programmables sur lesquels les calculs sont pipelinés.
L’architecture Raw est une grille de processeurs simples associée à des éléments de

4 PRÉSENTATION EN FRANÇAIS I.3

routage. Un compilateur, Maps, distribue les calculs sur la grille. Finalement,
l’architecture GPA (Grid Processeur Architecture) propose une grille d’unités de
calculs (ALU). Les instructions sont exécutées sur la grille selon le flot de donnée.

I.2.3 Conclusion

Les architectures présentées proposent de dédier plus d’espace de la puce au cal-
cul plutôt qu’à d’autre mécanismes plus compliqués de spéculation et de contrôles.
Cependant, la plupart de ces architectures parient sur la régularité des données et
du flot de contrôle. Plusieurs applications, notamment les applications de calcul
entier et ceux contenant des structures de données complexes, ont du mal à ex-
ploiter efficacement ces architectures. Les principaux obstacles étant l’irrégularité
des branchements, les accès mémoires dépendants et les régions de codes contenants
des séquences d’instructions dépendantes empêchant un parallélisme d’instruction
raisonnable. Le Chapitre 3 de cette thèse traite particulièrement ce dernier point.

I.3 Extractions de fonctions à partir d’une séquences d’instructions
dépendantes

Les différentes approches étudiées dans le Chapitre 2 proposent d’exécuter tout ou
une partie d’un programme en projetant son flot de données correspondant sur un
circuit. Ce circuit peut être reconfigurable ou composé de cellules programmables
à grain plus gros. Cependant, les instructions dépendantes sont transformées en
éléments matériels qui restent dépendants. Dans notre approche, nous traitons les
codes qui contiennent des châınes d’instructions dépendantes en les écrasant sous
forme de fonctions combinatoires tout en évitant l’explosion exponentielle de la taille
du circuit.

I.3.1 Principes

La Figure I.1 illustre un code C ainsi que les instructions correspondantes. Les
instructions compilées sont toutes dépendantes et ne peuvent exécuter en parallèle.

Notre approche consiste à extraire les fonctions de sorties des graphes de flot de
données de l’application (les sorties des nœuds n2, n3, n6 et n7 du graphe de la Fig-
ure I.1(c) correspondants aux écritures dans les registres r3, r4, r5 et le résultats de
branchement respectivement) et les exécuter en parallèle sur des circuits combina-
toires configurables comme le montre la Figure I.1(d). Au prix de calculs redondants,
nous avons ainsi transformé une séquence d’instructions dépendantes en 4 fonctions
qui exécutent en parallèle. Afin d’éviter le coup exponentiel de la fonction nous

I.3EXTRACTIONS DE FONCTIONS À PARTIR D’UNE SÉQUENCES D’INSTRUCTIONS 5

result=(long)hdL+(long)hdR−1;
ov=(int)result;
if((ov<<1)>>1==ov)
 return ov;

(a)

i1: addq r10,r9,r3 ; hdL+hdR

i3: addl r31,r3,r4 ; ov=(int) result;
i4: sll r4,0x1,r5 ; ov <<1

i7: bne r5, continue

i5: sra r5,0x1,r5 ; ((ov<<1)>>1)
i6: xor r5,r4,r5 ; ((ov<<1)>>1)==ov

i2: subq r3,0x1,r3 ; hdL + hdR −1

(b)

xor

r5

br

ne

r10 r9

1
r3

+

−

r3

+

0

r4

1

<<

r51

>>

r5

n1

n2

n3
n4

n5

n6

n7

(c)

r3 r4 r5 br

r3

r10 r9

f

r10 r9

f

r10 r9 r10 r9

ff

r4 r5 br

(d)

Figure I.1: (a) Code C, (b) code assembleur, (c) graphe de flot de donnée, et (d) fonctions
de sortie.

.

1 0

1

11 0 0

0

0163

63

63

63 63 62

62

0163
FFF

r3r3r3

r9r10

Cout2

Cout1

Cout2

Cout1Cout1

Cout2

r10 r9 Cout2

Cout1

r10 r9

Figure I.2: Opérateur matériel.

6 PRÉSENTATION EN FRANÇAIS I.3

avons proposé un circuits configurable ou chaque bit de sortie est associée à une
fonction plus un réseaux de propagation de retenues comme le montre la Figure I.2.

I.3.2 Potentiel et limitations

Afin d’étudier le potentiel de notre approche nous avons analysé les codes SPECINT
2000 ainsi que certains des codes OLDEN [Rog95] et MIBENCH [Gut01]. Nous avons
construit un outil qui extrait les fonctions des traces d’instructions exécutées, et nous
en avons déduit la borne supérieure de l’accélération potentielle en mesurant les
longueurs des châınes d’instructions écrasées. Nous avons observé une accélération
potentielle de 50% en moyenne et allant jusqu’à 132%. Bien qu’il existe de très
longues châınes d’instructions dépendantes, l’accélération maximale reste relative-
ment limitée à cause des coupures introduites dans le graphe de flots de données. Les
coupures de ces graphes sont les nœuds qui ne peuvent être écrasés avec les autres
nœuds dépendants. Les cinq principales causes de coupures sont la taille de la trace
considérée, les instructions de chargement de la mémoire, la limitation du nombre
d’entrées au circuit reconfigurable, les instructions qui ne peuvent être écrasées en
fonctions (les appels système par exemple) et finalement une contrainte du circuit
configurable qui impose la propagation de la retenue du bit de poids faible au bit de
poids fort. Nous analysons dans le Chapitre 3 chacune de ces contraintes en détail.

I.3.3 Implémentation

Dans l’étude du potentiel nous avons montré que, afin d’obtenir le plus de châınes
d’instructions dépendantes, il est important de pouvoir obtenir des traces dynamique
d’exécution suffisamment grandes. De plus, il est important que l’extraction des
fonctions et la configuration des unités de fonctions correspondantes ne soit pas
dans le chemin critique de l’exécution. Afin de réunir ces deux conditions nous
avons implémenté notre mécanisme dans l’environnement RePLay présenté par S.
Patel et al. [Pat01]. L’environnement RePLay permet d’optimiser de larges traces
d’exécution dynamique d’instruction dans une unité d’optimisation qui opère en
dehors du chemin critique du processeur. Nous avons implémenté notre engin
d’optimisation dans cette unité afin d’extraire les fonctions des traces d’instructions.
La Figure I.3 montre l’architecture utilisée.

En optimisant 65% de toutes les instructions exécutées, nous avons obtenu des
accélérations qui varient de 3,5% à 19% selon la latence supposée de l’unité de
fonctions (nous avons étudié une latence variante de 1 à 6 cycles).

I.4
DOUBLE CHARGEMENT: UNE MÉTHODE POUR RÉDUIRE LA LATENCE DES

CHARGEMENTS DE DONNÉE INDIRECTES 7

Optimization
Engine

Recovery

Mechanism

Fetch Engine

Execution EngineConstructor
Frame

Frame
Cache ICache

Decode and Issue Unit

Instruction Fetch Unit

Register Update Unit

Memory

Registers
Load

Sequencer

Register

File

Completing Inst.

Macro
Inst.

Branch
Promotion

Function

Builder

DFG

Builder

Frame
Buffer FU FUFU Function

unit

Function

unit

Functions
Configurations

Figure I.3: Architecture.

I.3.4 Conclusion

Dans cette partie de la thèse nous avons présenté une approche matérielle qui ex-
ploite l’espace de la puce en écrasant des séquences d’instructions dépendantes dans
des unités de fonctions configurables. Cette approche ne dépend ni de l’existence
de parallélisme d’instructions ni de spéculation. Nous avons aussi remarqué que
notre approche est relativement sensible à la capacité d’extraire de longues châınes
d’instructions ainsi que l’existence d’instructions de chargement dépendantes.

I.4 Double chargement: une méthode pour réduire la latence des charge-
ments de donnée indirectes

Une des limitations de l’approche étudiée dans le Chapitre 3 est l’existence de châınes
d’instructions de chargement dépendantes qui empêchent la transformation de plus
longues châınes en fonctions à cause du chargement mémoire. Ce problème est
d’autant plus aggravé par la latence croissante du chargement mémoire par rapport
au temps de cycle du processeur. Dans ce chapitre nous proposons une approche
pour réduire la latence des chargements indirects de la mémoire, notre approche

8 PRÉSENTATION EN FRANÇAIS I.4

1

2

4

5

6

7

9

38

1

2

1b

5

7

8

6
4 3

6b

2b

a’c’

c=b+d

(a)

v b

DTLB

c

a

a’c’

Mémoire (M)

Caches L1 et L2

Controleur Mémoire

Processeur (P)

(b)

a

a’

d

c=b+d

c’

v

v

Caches L1 et L2 DTLB

Translation

c’

Controleur Mémoire

b a’

Processeur (P)

b

Mémoire (M)

Figure I.4: Double Chargement: (a) architecture normale, et (b) avec double chargement.

se base sur (1) une méthode pour identifier les chargements indirects de mémoire
susceptible de faire défaut dans les caches et (2) remplacer ces chargement indirects
par une opération de double chargement qui permet d’éviter le double trajet vers la
mémoire et ceci grâce à une logique spécialisée près de la mémoire (plus précisément
dans le contrôleur mémoire).

I.4.1 Principes et implémentation

La squence d’instructions considérée par notre approche est sous la forme:

load b = [a]
add c = b + d
load v = [c]

Ces instructions correspondent à un accès mémoire indirect. L’idée principale est de
remplacer la seconde instruction de chargement mémoire par une instruction double
chargement qui peut être lancée sans attendre le résultat du premier chargement.
Les instructions exécutent donc d’un manière équivalente à:

load b = [a]
load_squared v = [[a]+d]

La Figure I.4 décrit l’opération du chargement indirect sur une architecture con-
ventionnelle (Figure I.4(a)) et sur une architecture supportant les opérations de dou-
ble chargement (Figure I.4(b)). Dans la première architecture, deux allers-retours

I.4
DOUBLE CHARGEMENT: UNE MÉTHODE POUR RÉDUIRE LA LATENCE DES

CHARGEMENTS DE DONNÉE INDIRECTES 9

Double Chargement

L
oa

d
ta

rg
et

r0
r1
r2

r3

r30
r31

PC:ldq r8,8(r1)

Miss

r8
update

Pr
ed

ic
te

d
M

is
s

B
as

e
re

gi
st

er

O
ff

se
t

r5 4X X

 ldq r1,4(r5)

chargement
Prédicteur de

Table de double chargement

Figure I.5: Détection de double chargement.

vers et de la mémoire sont nécessaires pour obtenir la valeur v. Dans la deuxième
architecture, nous ajoutons de la logique au niveau du contrôleur mémoire pour ef-
fectuer l’addition (b+d) à ce niveau plutôt que de l’effectuer dans le processeur. De
cette manière un des deux allers-retours est fait seulement entre le contrôleur et la
mémoire.

Afin de bénéficier de cette opération il est important de s’assurer que les deux
chargements impliqués dans le double chargement font défaut dans les caches, sinon
l’opération de double chargement peut être plus coûteuse en terme de latence que
si les deux chargements étaient effectués à partir du processeur. Pour cela nous
utilisons une table de double chargement pour détecter les chargements de données
dépendants comme le montre la Figure I.5. Afin de pouvoir déterminer le comporte-
ment de chacun des chargements par rapport aux caches avant leurs exécution, nous
associons à la table de double chargement un prédicteur de chargement qui prédit ce
comportement et détermine si le second chargement doit être remplacé par le double
chargement. Ce prédicteur de chargement fonctionne de la même manière que les
prédicteurs de branchements utilisés dans les processeurs superscalaires.

I.4.2 Evaluation

Les codes analysés ont montré que environs 12% des instructions de chargement sont
directement dépendantes d’une autre instruction de chargement. Néanmoins, peu
d’entre eux font défaut dans le cache, ce qui rend le rôle du prédicteur très important
pour détecter les doubles chargements appropriés. Le taux de bonnes prédictions de

10 PRÉSENTATION EN FRANÇAIS I.4

chargements est de 87% ce qui permet d’avoir des accélérations substantielles pour
certaines application: 5% pour twolf, 7% pour em3d et 50% pour ammp.

I.4.3 Perspective: Migration des calculs vers la mémoire

Dans cette dernière partie de la thèse nous généralisons l’approche du double charge-
ment en migrant de plus larges parties de codes vers la mémoire. Notre approche
cible les accès de structures de donnée irrégulières et se base sur d’une part, une
séparation explicite des accès de données et leur traitement via une extension de
langage, et, d’une autre part une architecture découplée qui utilise une mémoire
intelligente pour exécuter les partie accès mémoire du code.

Etat de l’art

Notre approche étend deux type de travaux présentés dans la littérature: les archi-
tectures découplées et les mémoires intelligentes. Les architectures découplées sont
des architectures qui séparent les instructions de calculs des instructions d’accès
mémoire et exécutent les deux types en parallèle dans un schéma producteur /
consommateur. Smith et al. [Smi84] ont proposé une des premières architectures
découplées qui consiste en deux processeurs scalaires l’un pour exécuter les cal-
culs, l’autre pour effectuer les accès mémoires. Les deux communiquent entre eux
par des files matérielles. Le processeur ZS-1 [Smi87] sépare le flot d’instructions
en deux pipelines, l’un pour les calculs flottants, l’autre pour les calculs entiers et
accès mémoires. Pleszkun et al. [Ple86] ont présenté une des rares architectures
découplées qui traitent directement les structures de donnée complexes, en parti-
culier les listes châınées. L’architecture HiDISC [Ro03] propose une architecture
découplée ainsi qu’un compilateur qui sépare les instructions de calculs et d’accès.
Finalement, Roth et al. [Rot00] proposent d’extraire les instructions causant beau-
coup de défauts dans les caches dans un flot d’exécution séparé exécutant à l’avance
de l’exécution normale afin de fournir aux caches les données nécessaires pour le flot
principal d’exécution.

En plus des architectures découplées, l’approche que nous proposons est motivée
par l’émergence des mémoires intelligentes. Les mémoires intelligentes, tels que
IRAM [Pat97], intègrent de la logique pour effectuer du calcul dans la mémoire
même. Cette technique permet d’atteindre environs 100 fois plus de bande passante
ainsi que 10 fois moins de latence.

La DSCM: une machine pour les structures de données complexes

La Data Structure Conscious Machine (DSCM) est une architecture découplée dans
laquelle les opérations relatives aux accès mémoire sont effectuées dans une mémoire

I.5
DOUBLE CHARGEMENT: UNE MÉTHODE POUR RÉDUIRE LA LATENCE DES

CHARGEMENTS DE DONNÉE INDIRECTES 11

Traverse(Node* List)
{

for(Node* tmp=List; tmp;
tmp=tmp->next)

{
process(tmp);

}
}

→

Traverse(Node* List)

fetch:

{
/* fetch thread executed

at the DP*/
for(Node* tmp=List; tmp;

tmp=tmp->next)
fetch(*tmp);

}

execute:

{
/*Compute side (EP)*/
Node Nd;
while(read(Nd))

process(Nd);
}

(a) (b)

Figure I.6: Traversée d’une liste châınée dans l’architecture découplée.

intelligente pour bénéficier de la large bande passante et la latence réduite. La
particularité de notre approche est la séparation explicite des flots d’exécution et
d’accès mémoire grâce à un langage d’extension.

Dans l’extension de langage que nous proposons, l’utilisateur défini explicitement
les flots d’exécution qui concernent le processeur et ceux qui concernent la mémoire
intelligente. La Figure I.6 montre un exemple d’une traversée d’une liste châınée en
utilisant l’extension de langage proposée: la traversé de la liste est scindée en deux
flots d’exécution distincts, l’un qui exécute dans le processeur principal, l’autre dans
la mémoire. Cette approche explicite garantit un partitionnement approprié, car
l’utilisateur détient la sémantique qu’un compilateur ne peut pas toujours déduire.
La Figure I.7 montre l’architecture DSCM: nous proposons deux processeurs dis-
tincts, l’un d’entre eux, le processeur de données, est une mémoire intelligente tel
que l’IRAM. Des files matérielles permettent de communiquer les données entre les
deux processeurs. Chaque processeur est multiflot afin de permettre à l’utilisateur
de définir plusieurs flots exécutants en parallèle de part et d’autre.

Nous avons effectué des expériences préliminaires sur des boucles élémentaires
pour étudier notre approche, et nous avons pu obtenir des accélérations allant jusqu’à
5 fois pour une traversé d’une liste châınée, et 3 fois pour une multiplication de
matrice.

12 PRÉSENTATION EN FRANÇAIS I.5

....

L1

L2

....

D0 D1 Dn

M0 M1 Mn

Flot d’exécution

Files Materielles

Mémoire

Files Materielles

Flots d’accès
mémoire

Mémoire intelligente

Processeur haute performance

Figure I.7: Architecture DSCM.

I.5 CONCLUSIONS 13

I.5 Conclusions

Nous avons exploré dans cette thèse plusieurs approches alternatives pour mieux
exploiter l’espace disponible sur la puce et réduire l’effet de la latence croissante par
rapport au processeur. Dans un premier temps nous avons présenté une approche qui
extrait les fonctions de sortie des suites d’instructions dépendantes afin de surmonter
le manque de parallélisme d’instructions. Ces fonctions sont exécutées sur des unités
de calculs configurables sur la puce.

Dans un deuxième temps nous avons remarqué que l’extraction des fonctions était
limitée par les instructions de chargement, notamment les instructions de charge-
ment dépendantes. Nous avons donc proposé une approche qui identifie les pairs
d’instructions de chargement dépendantes, et remplace la dernière par une instruc-
tion de double chargement qui effectue le calcul d’adresse proche de la mémoire afin
d’économiser le chemin aller-retour de et vers la mémoire.

Finalement, nous avons étudié la généralisation de cette approche en proposant
une architecture découplée dont la partie accès mémoire est une mémoire intelligente
qui bénéficie d’une latence d’accès relativement réduite. Les résultats préliminaires
de cette approche sont prometteurs.

Les technologies d’intégration actuelles et futures permettrons sans doute une
ou plus de combinaisons des différentes approches discutées. De plus les nouvelles
technologies tel que les nanotechnologies ou les mémoire magnétique ouvrirons la
voie à plus d’espace de calcul sur la puce de même que plus de défis architecturaux
tel que la consommation d’énergie et la tolérance aux fautes.

Publications durant la thèse

• Sami Yehia, Jean-Franois Collard and Olivier Temam, “Load Squared: Adding
Logic Close to Memory to Reduce the Latency of Indirect Loads with High
Miss Ratios,” MEDEA Workshop, held in conjunction with the International
Conference of Parallel Architectures and Compilation Techniques (PACT),
October 2004.

• Sami Yehia and Olivier Temam, “From Sequences of Dependent Instructions
to Functions: An Approach for Improving Performance without ILP or Spec-
ulation,” 31th Annual International Symposium on Computer Architecture
(ISCA), June 2004.

• Sami Yehia and Olivier Temam, “From Sequences of Dependent Instructions
to Functions: A Complexity Effective Approach for Improving Performance
without ILP or Speculation,” 4th Workshop on Complexity-effective Design

14 PRÉSENTATION EN FRANÇAIS I.5

(WCED) held in conjunction with the 30th Annual International Symposium
on Computer Architecture (ISCA), June 2003.

Chapter 1
Introduction

Current integration technologies and advances in semiconductor manufacturing open
the way to an unprecedented number of transistors on a single processor die. Techno-
logical improvements have allowed the number of transistors per chip to be doubled
every 18 months and performance to double every two years [Pat90]. With this po-
tential technology, the role of computer architecture in achieving best performance
and meeting functional and cost goals became predominant.

1.1 Computer Architecture Challenges

While integrated circuit technology is reaching one billion transistors on a single
chip [Bur04], the major challenge remains in the best way to exploit this enormous
level of integration. This challenge is principally addressed by exploiting all forms of
parallelism. The major forms of parallelism are Instruction Level Parallelism (ILP),
Data Level Parallelism (DLP) and finally Thread Level Parallelism (TLP).

The advent of superscalar processors addressed ILP by allowing the execution of
more than one instruction per cycle. Then several SIMD instruction set extensions
such as SSE3 [Hin01], Altivec [Mot99] and 3DNow![AMD00] were added to architec-
tures to achieve DLP, and finally SMT architectures [Tul95] enabled several threads
to execute in parallel. On-chip space could be efficiently exploited for applications
that have high data level parallelism and regular data access patterns as well as
predictable control flow, through aggressive speculation and deeper pipelining.

Still, current architectures can do little with applications having complex data
structures or irregular data access patterns. Integer applications particularly suffer
from such properties. Agarwal et al. [Aga00] showed that, unless applications are
mapped differently on the chip, the achievable performance growth of conventional

15

16 INTRODUCTION 1.3

microarchitectures will slow substantially due to both diminishing improvements in
clock rates and poor wire scaling as semiconductor devices shrink.

The main bottlenecks lying in non-numeric applications are the low ILP and
irregular data structures:

• Jouppi et al. [Jou89] showed that aggressive pipelining and superscalar pro-
cessors have little effect on the performance of many non-numeric applications
because they have little ILP. The existence of chains of dependent instructions
that cannot execute in parallel is one of the major bottlenecks in non-numeric
applications. These region of codes having low ILP cannot benefit from the
SIMD optimizations, and agressive ILP support in superscalar processors.

• While integration and processors technology have led to a near-exponential
increase in processor speed and memory capacity, memory latencies have not
improved as dramatically, and the growing gap between processor speed and
memory latencies is increasingly limiting applications performance. This prob-
lem is know as the Memory Wall problem [Wul95]. While this problem is
partially addressed through data prefetching, address and value prediction, a
lot of work has yet to be done for linked data structures and pointer chasing
problems.

1.2 Contributions

In this thesis we propose alternative approaches to exploit on-chip space and reduce
the memory wall effect, our main contributions are:

• We present a novel approach to improve the performance of codes that have
little or no ILP, by collapsing sequences of dependent instructions to functions,
we also address the problems and limitations of the approach.

• The collapsing approach being limited by memory accesses in sequences of
dependent instructions, we propose an approach to improve the performance
of dependent loads that have high miss ratios by adding logic closer to memory.

• We investigate a generalization of this concept by presenting a decoupled archi-
tecture associated with a language extension to migrate parts of applications
that intensively access the memory closer to memory.

1.3 Thesis Organization

In Chapter 2, we present a state of the art of several approaches that exploit on-
chip space differently, we split these approaches in two categories: reconfigurable

1.3 THESIS ORGANIZATION 17

architectures, and grid architectures. Both directions map applications on the chip
in a spatial way, the main difference between them lies in the granularity and the
mapping strategy. We also discuss the strength and limitations of the different
approaches as well as the motivation to our work.

In Chapter 3, we present an alternative approach to improve the performance of
sequences of dependent instructions. We observe that many sequences of instructions
can be interpreted as functions. Unlike sequences of instructions, functions can be
translated into very fast but exponentially costly two-level combinational circuits.
We present an approach that exploits this principle, speeds up programs thanks to
circuit-level parallelism/redundancy, but avoids the exponential costs. We analyze
the potential of this approach, and then we propose an implementation that consists
of a superscalar processor with a large specific functional unit associated with specific
back-end transformations. We also discuss the limitations of the approach as well
as its potential performance improvement in an idealistic environment.

Because the collapsing approach is limited by dependent memory accesses, we
propose in Chapter 4 an approach to improve the performance of indirect memory
accesses having high miss ratios. To reduce the total latency of such accesses, a
new operation called load squared is introduced. This operation is performed by
memory-side logic, typically the memory controller. We present a method to detect
indirect loads that frequently miss in caches, and dynamically replace them with
load squared.

We conclude this chapter with a perspective that extends the concept of mi-
grating the address calculation by migrating part of the application to an intelligent
memory. We present a novel decoupled architecture that decouples memory accesses
of complex data structures from computations. We propose an explicit decoupling
through an extension to C language, so that the user can explicit which parts of the
application to migrate. Then we show that our approach can also be applied to SMT
processors without resorting to decoupling, by executing memory access parts of the
application in a separate thread in an SMT processor. A general overview of the
proposed architecture as well as the instruction set extention is given in Appendix A.

We summarize our research work and propose several directions for future re-
search in Chapter 5.

Chapter 2
Exploiting On-chip Space for
Computations

Current and upcoming architectures devote available on-chip space to more aggres-
sive execution via pipelining, and exploiting all forms of ILP mainly through spec-
ulation. Nevertheless, a lot of emerging architectures attempt to use on-chip space
differently. Current processors already devote space to computations through SIMD
instructions set extensions such as the Streaming SIMD Extension 3 (SSE3) in the
Intel Pentium 4 processor [Hin01], the Altivec in PowerPC [Mot99] and the 3DNow!
extension in AMD processors [AMD00]. Nevertheless, such approaches rely heavily
on regular access of data in multimedia application and are not always adequate
for complex data structures. Two different but complementary approaches exploit
more efficiently on-chip space for computation: reconfigurable architectures devote
additional space to customizable functional units that may be configured by the
user (or the compiler). These architectures can efficiently execute short sequences of
operations by mapping them on logic circuits. The second approach, grid architec-
tures, tries to better use space in processor architectures, by mapping computations
on arrays of ALUs or simple processors.

2.1 Reconfigurable Architectures

Reconfigurable computing offers the potential to achieve partially the performance of
application specific integrated circuits (ASIC) and the flexibility of general purpose
processors. By dedicating part of the on-chip space to programmable devices, part of
the application may execute more efficiently on this specialized hardware than on a
traditional superscalar pipelined processor. The advent of field-programmable gate

19

20 EXPLOITING ON-CHIP SPACE FOR COMPUTATIONS 2.1

Register

File
and

Bypass
Logic

FU1 FU2 PFU
Paddr
Pdata

(a) PRISC-1 datapath

Interconnecion Matrix
LUT LUT LUT LUT

LUT LUT LUT

.

.

.

.

Interconnection Matrix

LUT Cells

.........

....

....

....

PFU

Output to destination busses

Inputs from operand busesn n

n

(b) PFU architecture

Figure 2.1: PRISC architecture.

array (FPGAs) in the mid-1980s opened the way to applications of reconfigurable
computing. FPGAs are arrays of programmable computational elements whose func-
tionality is determined through multiple programmable configuration bits. Recon-
figurable computing and FPGAs technologies have been extensively covered and
discussed in [Com02; MS97; Tes01; Hau98; Ros93; DeH99; DeH00].

In this section we review the literature on reconfigurable computing from a pro-
cessor architectural perspective, and especially how it is used in general purpose
systems. PRISM [Ath93] is one of the first general purpose systems that compiles
and maps critical parts of an application to a reconfigurable co-processor. Below,
we present general purpose architectures that partially or completely map the ap-
plication on programmable devices.

2.1.1 PRISC

The Programmable RISC (PRISC) [Raz94] augments a conventional RISC instruc-
tion set with application-specific instructions that are implemented in hardware-
programmable functional units (PFUs) as shown in Figure 2.1(a). Physically, the
instruction set is extended with a single new instruction containing an index to
a programmed PFU. PFUs implement two-input, one-output combinational func-
tions that are defined and generated by the compiler. The compiler uses profiling
information to identify potential sequences of instructions to be mapped to PFUs.

The PFU is comprised of alternating layers of two basic components: intercon-
nection matrices and logic evaluation units, See Figure 2.1(b). Those layers are
constrained to allow the PFU to execute in one processor cycle. Multi-cycles PFUs
are also proposed in [Raz].

2.1 RECONFIGURABLE ARCHITECTURES 21

RBT

Reservation
Stations

BLT

DCACHE
ICACHE

Main Memory

Controller

Local Storage

Instruction

Buffer

logic
Memory
Interface

Host Pipeline

Fixed Logic Reconfigurable LogicMemory

Figure 2.2: OneChip architecture.

2.1.2 OneChip

OneChip [Wit96] tightly integrates reconfigurable logic resources and memory into
a fixed-logic out of order processor core. OneChip allows the user to transform
sequences of complex operations to a single operation that is mapped to the recon-
figurable unit. This mapping enables a faster execution of those complex operations.
Also, the reconfigurable logic directly interfaces with memory to get its operands,
allowing a SIMD-like processing of large blocks of data. Multimedia and streaming
applications particularly benefit from this approach. Furthermore, this direct access
allows OneChip to execute in parallel with the CPU.

The FPGA reservation stations allow several macro operations to operate concur-
rently on the FPGA [Car01]. Also, OneChip defines a memory consistency scheme
in [Jac99] to allow parallel execution between the reconfigurable logic and the CPU.
The memory consistency is implemented using a Block Lock Table (BLT) to lock
memory blocks. The scheme may also support more than one FPGA.

Figure 2.2 shows the OneChip Architecture. The Reconfiguration Bit Table
(RBT) acts as the configuration manager that will keep track of where the FPGA
configurations are located. This role is similar to a TLB as configurations may
be swapped between the FPGA and the memory. The FPGA may have multiple

22 EXPLOITING ON-CHIP SPACE FOR COMPUTATIONS 2.1

Add
res

s
Custom Module 1
Custom Module 2

Add
Substract
Multiply

AND
..
..

a+b−c^d
Edge Detection

FFT

Processor Memory

Global Control

Instruction Module B

Instruction Module A

Library
Module

Instrution

Con
tro

l

Data

Figure 2.3: DISC linear hardware space.

contexts and can cache more than one configuration [DeH94].

Unlike other approaches, OneChip does not rely on a compiler. Instead, the
user defines the configurations of the FPGA, which executes the operation with a
single RISC instruction. This instruction points to the address in memory where
the FPGA configuration to be loaded is stored.

While the major asset of allowing the user to define complex operations is the
performance gain of such mapping, OneChip still requires to recompile and rewrite
the applications in order to take advantage of this approach. Also, due to the
complexity in terms of routing and reconfigurability of the FPGA, it is not always
easy to configure complex operations so that they execute faster than their equivalent
instructions on an out-of-order superscalar processor.

2.1.3 DISC: A Dynamic Instruction Set Computer

DISC [Wir95] is a loosely coupled reconfigurable architecture that treats instructions
as removable modules paged in and out. Customizable instructions are fully mapped
on the FPGA as shown in Figure 2.3. DISC dedicates the largest portion of the die
to customized instructions and may map complex libraries of instructions.

The DISC processor uses run-time reconfiguration to overcome FPGA hardware
limitations. The configuration overhead is reduced by partially reconfiguring the die
while other configured instructions execute.

2.1 RECONFIGURABLE ARCHITECTURES 23

ExecutingConfiguring

1 2 3 4 5 6 7
Stage 1

Stage 2

Stage 3

Stage4

Stage 5

Cycle:

(a)

(b)

1 2 3 4 5 6 7
Stage 1

Stage 2

Stage 3

Cycle:
1 1

2 2

24 4

5 5

3 11

1

2

3

4

5

1

2

11

3

2

4

5 5

3

1

3

4

5

4

2

3

2

Figure 2.4: Pipeline reconfiguration showing the virtualization of a five-stage pipeline on
a three-stage device:(a) the virtual pipeline stage and (b) the physical pipeline stage (the
numbers in the ovals refer to the virtual pipeline stage.)

2.1.4 PipeRench

Although PipeRench is presented with other reconfigurable systems, PipeRench
shares with Grid architectures, discussed in Section 2.2, the relative coarse gran-
ularity of its reconfigurable cells. PipeRench [Gol00] [Gol99] works as an attached
co-processor and consists of a reconfigurable fabric: an interconnected network of re-
configurable logic and storage elements - not necessarily FPGAs. In fact, PipeRench
overcomes the cost issues of implementing a circuit using FPGA cells by implement-
ing a large logic circuit on a small number of FPGA cells through their rapid re-
configuration. This technique is denoted as hardware virtualization, see Figure 2.4.
Hardware is virtualized by breaking a single static configuration into pieces that
correspond to pipeline stages in the application. Pipeline stages are then mapped
to a pipeline of reconfigurable fabrics with a number of stages that may be lower
than those configured. This technique is scalable because it is a linear function of
the device’s capability: increasing the number of hardware stages allows a higher
throughput. PipeRench is suitable for stream-based media applications and regular
fine grain computations.

PipeRench relies on a compiler that creates efficient reconfigurations through a
dataflow intermediate language (DIL): a single assignment language with C opera-

24 EXPLOITING ON-CHIP SPACE FOR COMPUTATIONS 2.1

RFU

OP2

H
os

t
P

ro
ce

ss
or

result bus

Shadow Register File

OP1

Figure 2.5: The overall Chimaera architecture.

tors.

Beside streaming multimedia regular applications, Chou et al. [Cho00] pro-
posed to use PipeRench as an Instruction Path Co-processor (I-COP) which is a
programmable co-processor that operates on the core processor’s instructions to op-
timize and transform them into a new format that can be more efficiently processed
by fast execution cores. The I-COP replaces the Fill unit [Fri98] of the trace cache,
the unit that collects traces to be stored in the trace cache. Beside efficient trace col-
lection, The I-COP proposes to implement further optimizations on collected traces
such as the register move optimization and adding prefetch instructions for strided
memory accesses and linked data structures (LDS).

2.1.5 The Chimaera architecture

Chimaera [Ye00a; Hau97a] integrates a reconfigurable logic into the host processor,
See Figure 2.5. Sequences of instructions are mapped on an array of reconfigurable
cells on a line basis, where each operation takes one or more lines in the array. In
other words, sequences of instructions are collapsed and mapped to one or more line
in the array. Reconfigurable operations (RFUOPs) are extracted using the Chimaera
compiler. Chimaera allows multi-operand instructions and support partial run-time
reconfiguration to reduce reconfiguration time. The Reconfigurable Functional unit
(RFU) is a reconfigurable array which caches RFUOPs, relying on the reusability
of reconfigurable operations. A reconfigurable instruction is a 9-input/1-output
instruction. When the RFUOP is in the RFU, it does not have to wait for the
occurrence of an RFU call in the instruction stream to begin executing, since it
already knows which registers it needs to access. Nevertheless, care should be taken
in RFU mapping creation and register assignment: for example, if an RFUOP takes

2.1 RECONFIGURABLE ARCHITECTURES 25

as input register R1, R2 and R3, any subsequent reuse of this RFUOP must use
these register inputs.

An interesting aspect is that there is no state-holding elements in the reconfig-
urable array of Chimaera [Hau97a]. Instead, the host processor register file is used
as the only storage element of the system. This aspect is novel, because it allows a
combinational processing of one or more instructions.

The Chimaera compiler [Ye00b] performs the following optimizations:

1. Instruction combination: Chimaera extracts RFUOPs from a sequence of in-
structions with no intermediate control flow.

2. Control localization: Chimaera compiler combines branch-containing code
sequences as a single unit called macro-instruction during assignment and
scheduling. This technique is also used in PRISC [Raz94] and the Raw pro-
cessor [Lee98].

3. SWAR optimization: SIMD Within A Register identifies sub-word operations
to be executed in parallel. Chimaera can pack 8-bit operations into a single-
word operation.

Because the reconfigurable operations are extracted at compile time, the Chi-
maera architecture cannot span multiple basic blocks, so potential complex opera-
tions that may depend on a certain control flow are not considered. Also the mapped
operations are still dependent in the reconfigurable array, so the operations are not
really collapsed.

2.1.6 The Garp architecture

Garp [Hau97b] combines a single issue MIPS processor core with a reconfigurable
array (similar to DISC) to be used as an accelerator. Garp accelerates loops of
general purpose programs and reconfigures the array only at the entrance and exit
of loops (unlike DISC that relies on partial reconfiguration of instruction modules).
So the Garp array executes independently whole loops. Like OneChip, Garp also
has its own direct path to the processor’s memory system.

The most important aspect of the Garp project is that it takes standard ANSI C
as input, without the need to insert any hints or directives in the source code. The
Garp compiler [Cal00] identifies code sections that can be accelerated using the Garp
array. The compiler then forms hyperblocks by joining all the basic blocks along the
frequently executed control paths of the loop body, excluding all uncommon paths
and codes that cannot map to the array. When a branch not belonging to the
frequently executed control path is taken, an exceptional exit from the array occurs,

26 EXPLOITING ON-CHIP SPACE FOR COMPUTATIONS 2.1

val=*p;
if(val!=NULL)

if(val>THRESHOLD)

if(val==INVALID)

count++;

exit1

exit2

hyperblock
printf()

==
!=

exit1

+

+

>

load

exit2

while((val=*++p)!=NULL){
 if(val>THRESHOLD)
 count++;
 if(val == INVALID)
 printf("Invalid!\n");

++p;

}

Figure 2.6: Garp compiler’s inner process.

2.2 CELL ARCHITECTURES 27

Architecture Computation Rely on Computation Memory Inst. Set

selection compiler granularity interface extension

PRISC Profiling Yes Control None Add an
localization instruction

OneChip Hand coded No Any function Direct Add an
instruction

CHIMAERA Code analysis Yes Control None RFUOPs
localization

PipeRench Code analysis Yes Basic Block None Own Inst.
Set

DISC Hand coded No Any Direct None

Garp Profiling Yes Hyperblocks, Few
Control Direct instructions

localization added

Table 2.1: Summary of reconfigurable architectures.

see Figure 2.6. Like Chimaera, Garp merges all the included basic blocks using
predication, allowing operations from different basic blocks to be brought together
into a single large DFG, mapped to the FPGA.

2.1.7 Summary of reconfigurable architectures

Reconfigurable architectures could substantially improve performance of a lot of reg-
ular applications. However, the fine granularity of the previously described mecha-
nisms, especially those relying on FPGAs, have important drawbacks, namely the
configuration time, hardware constraints and compilation time [Gol99]. For example
while Garp, Chimaera, PRISC and PipeRench require a lot of effort to develop an
optimizing compiler, DISC and OneChip require that the user explicitly defines the
functions to be mapped to the reconfigurable device, which leads most of the time
to poorly optimized circuits. Nevertheless, PipeRench offers a good compromise by
proposing a language, thus allowing the user to define the functions to be executed
so that the compiler can efficiently map it to the reconfigurable device. Table 2.1
summarizes some architectural aspects of reconfigurable architectures.

2.2 Cell Architectures

Because a lot of programs have little or no ILP, and fail to exploit instruction
parallelism in superscalar processors, new directions suggest better exploiting on-
chip space by building arrays of simple processing elements (cells) but of coarser
grain than FPGA. In general, each cell or tile includes at least one ALU, one or

28 EXPLOITING ON-CHIP SPACE FOR COMPUTATIONS 2.2

Decode Decode Decode Decode Decode DecodeController

A
L
U

R
A
M

A
L
U

R
A
M

R
A
M

A
L
U

M
U
L
T

Bus Connector
Input Muxes Output Drivers

Datapath registers

Figure 2.7: RaPiD architecture.

more registers and probably a small memory and a sequencer to execute simple
instructions on each tile. More complex tiles may include a full simple pipelined
processor. Furthermore, cell arrays must contain routing structures. We notice
that by attempting to map program DFGs on a network of cells, the processor
architecture exploits on-chip space in a manner closer to FPGAs than centralized
control.

Taylor et al. [Tay03] called such cell architectures scalar operand networks,
and identified the major challenges in such architectures, namely delay scalability,
bandwidth scalability, deadlock and starvation, efficient operation-operand matching
and exception handling.

In this Section we discuss three cell or grid architectures: RaPiD, Raw and GPA.

2.2.1 RaPiD : Reconfigurable Pipelined Datapaths

RaPiD [Ebe96] is one of the first coarse grain configurable architectures that may
be classified as a cell architecture. RaPiD implements a pipelined architecture of

2.2 CELL ARCHITECTURES 29

result

inData[0]

 w[0]

*

Stage 0

* * *

inData[1]

 w[1]

inData[2]

 w[2]

inData[3]

 w[3]

Datapath {

}

if (s==0) result = inData[s] * w[s];
else result = result + inData[s] * w[s];

Stage 1

+

Stage 0

+

Stage 0

+

Figure 2.8: RaPiD-C.

cells which distribute computations over pipeline stages. RaPiD is a linear array of
functional units which is configured to form a mostly linear computational pipeline.
The array of functional units is divided into identical cells which are replicated
to form a complete one-dimensional array. Figure 2.7 shows RaPiD architecture
and a cell which includes an integer multiplier, three integer ALUs, six general-
purpose datapath registers and three small local memories. A typical single-chip
RaPiD array would contain between 8 and 32 of these cells. The functional units
are interconnected using a set of segmented buses that run the length of the data
path.

Due to the special nature of pipelined computations, Ebeling et al. [Ebe03]
proposed RaPiD-C: an extension to C which allows to describe the operation of
each pipeline stage for one data element passing through the pipeline. Figure 2.8
shows a vector dot product using RaPiD-C and how it is mapped to the RaPiD
architecture. The statements in the Datapath blocks are executed for all values of
s from 0 to STAGES-1.

Proposing an adequate language extension that fits on the proposed architecture
is one of the principal merits of RaPiD. Still, the approach deals with regular stream-
ing applications and fails to properly map algorithms with complex data structures
manipulations.

2.2.2 Raw machines

Raw [Wai97] is a simple highly parallel replicated architecture directly exposed to
the compiler. Figure 2.9 shows the Raw architecture, each tile contains a simple,
eight-stage, in-order, single-issue RISC processor and is interconnected with other
tiles over a pipelined, point-to-point network. The implemented Raw processor has

30 EXPLOITING ON-CHIP SPACE FOR COMPUTATIONS 2.2

Raw
Tile

ALU

PC

CL

REGS

IMEM
DMEM

SWITCH

SMEM
PC

} 256 wires

Figure 2.9: A Raw microprocessor.

16 tiles [Tay02] [Tay04]. Memory banks are distributed along with the processing
elements. Each bank is directly addressable by its local processing element, without
going through a layer of arbitration logic. Remote memory accesses are performed
through two general inter-tile interconnects: a fast static networks for compilable
analyzable accesses and a slower, fail-safe dynamic networks. Each tile includes two
sets of control logic: the first set controls the operations of the processing element
and the second is dedicated to sequencing routing instructions for the static switch.

Like most parallel computers, Raw relies heavily on the compiler to discover
and statically schedule the parallel execution of instructions, but Raw machines can
provide multiple instruction streams. Computations are mapped to each process-
ing element statically, therefore the compiler manages data movements. The Raw
compiler (Rawcc) comprises two major components. The Maps compiler described
in [Bar99][Bar01] is the memory front end that performs Bank disambiguation, i.e.
determines at compile-time which bank a memory reference is accessing. The Maps
compiler partitions all memory references into equivalent classes to achieve high data
locality on the tiles. The space-time scheduler [Lee98] is the back end of Rawcc. It
maps instruction level parallelism to the Raw tile and maps each equivalent class of
data objects to the memory bank of a specific Raw tile.

2.2.3 GPA: Grid Processor Architectures

The GPA [Nag01] is an array of ALUs each with limited control to which blocks of
statically scheduled instructions are mapped, and executed dynamically in dataflow
order. The tiles of the GPA are simpler than those of the Raw architecture, each
tile of the virtual grid executes a single instruction. Physically, because the number
of tiles are limited, each tile contains several frames, a frame may be considered as

2.2 CELL ARCHITECTURES 31

Fr
am

es

I−cache bank 0

I−cache bank 1

I−cache bank 2

I−cache bank 3

D−cache bank 1

D−cache bank 2

D−cache bank 3

I−cache bank M

Register file banks and queues

D−cache bank 0

L
oa

d/
st

or
e

co
ns

is
te

nc
y

qu
eu

e

I1) add r2, r7, r8
I2) ld r1, r8, 0x0f
I3) add r2, r2, r2
I4) add r3, r2, r1
I5) beqz r3, 0xdeac

I1

I2 I3

I4

I5

MOVE−1: r8, ALU−3, ALU−6
MOVE−2: r7, ALU−3

I1−>ALU−3 :add, ALU−7
I2−>ALU−6 :ld 0x0f, ALU−11
I3−>ALU−7 :add, ALU−11
I4−>ALU−11:add, ALU−15, r3
I5−>ALU−15:beqz 0xdeac

Inst
Operands

I1

I3I2

I4

I5

ALU−10 ALU−11 ALU−12

1LU−13 1LU−14 ALU−16ALU−15

Block termination and control

Control

Router

Input Ports

Output Ports

From instruction
Sequencer

ALU

ALU−1 ALU−2 ALU−3 ALU−4

ALU−5 ALU−6 ALU−7 ALU−8

ALU−9

Figure 2.10: GPA.

a single virtual cell of the grid.

A compiler is also used to detect parallelism, build hyperblocks [Mah92] which
are predicated, single-entry, multiple-exit regions, and to schedule instructions. Fig-
ure 2.10 shows a hyperblock mapped to the GPA. GPA allows direct communication
between producing and consuming instructions, thus temporary results are not writ-
ten back to the register file. This way, dependent instructions are processed much
more faster because they are directly mapped to the array, unlike superscalar pro-
cessors where an instruction must wait for the instruction it depends on before it is
dispatched on a functional unit.

The TRIPS architecture [San03] elaborates on the GPA and contains four out-of-
order, 16-wide issue GPA, as shown in Figure 2.11. TRIPS introduces the concept of
polymorphous architecture as it can be configured and combined to support different
modes of parallelism: instruction (D-morph), thread (T-morph) and data (S-morph)
level parallelism:

D-morph. The Desktop morph uses the polymorphous capabilities of the pro-
cessor to run single-threaded codes by exploiting ILP. The compiler schedules hy-
perblocks into a 3-D region, assigning each instruction to one node in the 3-D space,
Figure 2.12 shows two scheduled hyperblocks scheduled, where each frame is limited
by the physical size of the ALU array. Each hyperblock is mapped to an A-frame.

T-morph. TRIPS proposes two strategies to support TLP, row processors in
which each thread is allocated one or more rows of the array, and frame processors

32 EXPLOITING ON-CHIP SPACE FOR COMPUTATIONS 2.2

GPA

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

D
R

A
M

 I
nt

er
fa

ce

GPA

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

D
R

A
M

 I
nt

er
fa

ce

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

D
R

A
M

 I
nt

er
fa

ce

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

D
R

A
M

 I
nt

er
fa

ce

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

D
R

A
M

 I
nt

er
fa

ce

GPA GPA

Figure 2.11: TRIPS architecture.

N4

N5 N6

N6

A−frame 0
(H0)

A−frame 1
(H1)

N1 N0

N2N3

N5 N4

Frame 1

Frame 2

Frame 3

Frame 0

R1

R1

H0

H1

Dataflow graph

N0

N1

N3

N2

Figure 2.12: D-morph frame management.

2.3 PROBLEMS AND LIMITATIONS 33

in which threads are allocated to unique sets of frames.

S-morph. To support high data level parallelism (DLP) for streaming media
and scientific applications, the S-morph fuses multiple A-frames to make a super
A-frame, instead of using separate A-frames for speculation or multithreading. This
fusion is motivated by the highly predictable control flow of these applications.

2.3 Problems and Limitations

Reconfigurable and grid architectures are different approaches that exploit on-chip
space in computations rather than in more complex speculated-oriented mechanisms
as in superscalar processors. Streaming and multimedia applications, more gener-
ally regular computations particularly benefit from such approaches. Still many
applications, especially integer, pointer-intensive applications fail to benefit from
such approaches, the three main obstacles being control flow (or branches), memory
accesses and instruction dependencies.

Control Flow / Branches. To exploit on-chip space efficiently, it is important to
have large portions of computations that may be directly mapped to the chip. This
condition may be fulfilled with regular, highly predictable applications. When the
application contains branches that are not predictable, which may be a frequent case
when traversing pointer-based data structures (branches are often data-dependent),
it is hard to anticipate which computations may be mapped to the die. A lot of
the approaches discussed in this chapter such as Chimaera and Garp could partially
circumvent or reduce the effect of this obstacle through control localization and
hyperblocking. Nevertheless, mapped computations are still limited by control flow.

Memory Access. Memory load instructions account for nearly 25% of all executed
instructions in the SpecInt 2000 benchmarks. Memory accesses are particularly
harmful when they are chained because it is not possible to fetch a large chunk of
instructions and their input data, then execute it on the grid; it is necessary to
frequently access memory from the cells/grid.

Instruction dependencies. Reconfigurable computing and grid architecture par-
tially handle this obstacle by executing instructions in a dataflow manner, thus
reducing the time instructions wait due to dependencies. For example As stated in
Section 2.1.5, all instructions dependencies must be resolved before an RFUOP can
execute. In the next chapter we discuss a method that attempts to address these
issues.

34 EXPLOITING ON-CHIP SPACE FOR COMPUTATIONS 2.3

More generally, the potential performance gains of many of the discussed recon-
figurable or cell architectures are only partially exploited, because these approaches
only focus on the architecture while one of the core issues is the difficulty to ex-
tract information on the parallelism and locality properties of such architectures.
We believe that more efforts should be devoted at the programming language level,
especially to extract additional program semantic in order to fully exploit the po-
tential of such architectures. We further explore this issue in the Data Structure
Conscious Machine discussed in Chapter 4.

Chapter 3
From Sequences of Dependent
Instructions to Functions: An Approach
for Improving Performance without ILP
or Speculation

3.1 Introduction

Current and upcoming processors heavily rely on increasing instruction throughput
through pipelining and exploiting all forms of ILP. The additional on-chip space that
comes with each new processor version is increasingly devoted to these techniques
(larger pipelines, larger branch prediction tables, larger caches, larger instruction
windows and reservation stations...) rather than to computing resources themselves
(functional units). Besides, throughput and ILP techniques increasingly rely on
speculative mechanisms (branch prediction, instruction and data prefetching, value
prediction...), and the quality of each individual prediction mechanism tends to
improve slowly.

Since each mechanism comes at a significant on-chip space cost, it is not ob-
vious that speculation will always remain the most complexity-effective path to
performance improvements. Already, two approaches discussed in Chapter 2, the
Chimaera architecture [Ye00a] and the Grid Processor Architecture (GPA) [Nag01]
used in the TRIPS architecture [San03] propose to use on-chip space differently to
improve performance. Both approaches rely on a common principle: directly map
part of the program dataflow graph to the architecture, so that instructions be-

35

36 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.2

come hardware operators and execute much faster; Chimaera maps instructions to
reconfigurable circuits, and GPA to grids of ALUs. However, once translated into
hardware, a sequence of dependent instructions remains a sequence of dependent
(connected) hardware operators. Therefore, both approaches are again limited by
intrinsic ILP [Wal91], and even more by the compiler ability to extract ILP [Ye00b],
just like current and upcoming processors. And the increasing processor architec-
ture complexity combined with the limitations of static analysis on pointer-based
codes, like the SPECInt2000 and the Olden [Rog95] benchmarks, already consider-
ably strain the compiler.

In this work, we propose an approach for exploiting additional on-chip space that
is not limited by the lack of ILP and that does not require complex software sup-
port. The starting point of our approach is to note that many stateless sequences of
instructions can be viewed and expressed as a function: it has input data (the func-
tion parameters) and has output data (the value of the function). Unlike algorithms,
functions can be mapped very easily to a combinational 2-level sum of products cir-
cuit (ORs of ANDs). While this transformation is extreme and its cost is prohibitive,
it does show that it is possible to obtain a sequence of dependent instructions as a
combinational logic circuit. Implicitly, this transformation trades on-chip space for
computing resources and achieves high speed by exploiting circuit-level parallelism.
We present an approach that exploits this principle while avoiding the exponen-
tial cost of the 2-level circuit transformation. The mechanism is implemented in a
superscalar processor using a large and scalable functional unit, called the Func-
tion unit. Even though this unit is reconfigurable, its structure is very different
and simpler than traditional FPGAs, especially with respect to its interconnection
network. The functions are built offline using the trace builder presented in the re-
PLay framework [Fah01], and we have implemented the corresponding toolset that
automatically converts rePLay frames into mappable functions.

With this mechanism, transformed frames execute up to 49% faster for some
codes. This mechanism illustrates a first implementation of an approach that pro-
vides a different way to improve the performance of sequences of dependent instruc-
tions.

In Section 3.2, we present the principles of the approach, the methodology in
Section 3.3, we analyze the potential speedup and limitations of the approach in
Section 3.4, we present the implementation and experimental results in Section 3.5.

3.2 Principles

To illustrate our approach and compare it with existing solutions, we will use the
example of Figure 3.1(a) extracted from procedure Sum of the SPECInt2000 bench-

3.2 PRINCIPLES 37

result=(long)hdL+(long)hdR−1;
ov=(int)result;
if((ov<<1)>>1==ov)
 return ov;

(a)

i1: addq r10,r9,r3 ; hdL+hdR

i3: addl r31,r3,r4 ; ov=(int) result;
i4: sll r4,0x1,r5 ; ov <<1

i7: bne r5, continue

i5: sra r5,0x1,r5 ; ((ov<<1)>>1)
i6: xor r5,r4,r5 ; ((ov<<1)>>1)==ov

i2: subq r3,0x1,r3 ; hdL + hdR −1

(b)

+

−

+

<<

>>

xor

ne

br

r9 r10

(c)

xor

r5

br

ne

r10 r9

1
r3

+

−

r3

+

0

r4

1

<<

r51

>>

r5

n1

n2

n3
n4

n5

n6

n7

(d)

fr3(r9, r10) = r9 + r10 − 1
fr4(r9, r10) = sign ext(r9 + r10 − 1)31:0
fr5(r9, r10) = ((r9 + r10 − 1) << 1) >> 1
fbr(r9, r10) = (r9 + r10 − 1)

⊕((r9 + r10 − 1) << 1) >> 1)

r3 r4 r5 br

r3

r10 r9

f

r10 r9

f

r10 r9 r10 r9

ff

r4 r5 br

(e)

Figure 3.1: An example of instruction collapsing: (a) C code, (b) assembly code, (c) non-
collapsed hardware operators, (d) corresponding DFG, and (e) corresponding functions.

38 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.2

mark 254.gap. This code adds two integers and compares the two most significant
bits to check for overflow. The resulting assembly code on an Alpha EV6 processor
is a fully sequential set of instructions, i.e., no two instructions can execute in par-
allel, as shown in Figure 3.1(b). Therefore, current and upcoming processors, which
heavily rely on the exploitation of all forms of ILP, can do little to improve the per-
formance of such codes. The Chimaera [Ye00a] or GPA [Nag01] approaches would
map the corresponding dataflow graph of Figure 3.1(b) respectively to a reconfig-
urable circuit or a grid of ALUs. The mapped hardware operators would perform
faster than a set of instructions, but they would still operate sequentially, as shown
in Figure 3.1(c).

In our approach, we split the dataflow graph (DFG) of Figure 3.1(d) into a set
of independent single-output functions, one for each output of the dataflow graph,
as shown in Figure 3.1(e). At the cost of redundant operations, e.g., r9+r10-1,
and thus hardware resources, all these functions can execute in parallel. Now, each
function can be translated into a combinational logic function and collapsed into
a 2-level logic circuit or a LUT. However, a simple function with two parameters
like fr3, corresponds to a 2128-bit truth table for each output bit (assuming two
64-bit registers), which is not realistic. One way to alleviate this size problem is to
implement a function of n input bits as a set of n 1-bit operators associated with a
multiple-carry propagation network, as shown in Figure 3.2(b). Each operator can be
implemented as a reconfigurable logic block much like in FPGAs, but the number of
1-bit inputs is higher than in traditional FPGAs, e.g., 4-input lookup-tables (LUTs)
in the Virtex-II Xilinx architecture [xil02], versus 6 inputs in our implementation. On
the other hand, the placement and routing are much more simple. Further increasing
the number of inputs would slightly increase performance (we have evaluated the
potential of up to 40-input blocks), but it would also significantly increase operators
size, see Section 3.4. The 1-bit logical expressions associated with function fr3 are
shown in Figure 3.2(a). Assuming a collapsed sequence of instructions in a Function
unit executes as fast as a single instruction, the length of the sequence of dependent
instructions is an upper-bound of the speedup, i.e., 7 in the example of Figure 3.1.
The impact of the Function unit delay on performance is studied in Section 3.5.4.

The notion of collapsing instructions was previously introduced by Phillips et
al. who proposed a 3-1 interlock collapsing adder that could collapse two dependent
adds into one specific 3-input adder [Phi94]. They later investigated the potential
of collapsing up to three dependent instructions [Saz96], but neither the concept
nor its implementation were generalized, and the notion of functions was not intro-
duced in these studies. Similarly, an instruction Scale and Add, which adds an
operand to another multiplied by a factor, is implemented in the Alpha ISA [alp98].
Furthermore, to a certain extent, Chimaera [Ye00a] proposes a limited form of in-

3.2 PRINCIPLES 39

(r9 + r10)i =

{

r90 ⊕ r100 i = 0
r9i ⊕ r10i ⊕ Cout1i−1 0 < i ≤ 63

(1)

Cout1i =

r90 · r100 i = 0
r9i · r10i + r9i · Cout1i−1

+r10i · Cout1i−1 0 < i < 63
(2)

(r9 + r10 − 1)i =

{

(r9 + r10)0 ⊕ 1 i = 0
(r9 + r10)i ⊕ 1 ⊕ Cout2i−1 0 < i ≤ 63

=

{

r90 ⊕ r100 i = 0
r9i ⊕ r10i ⊕ Cout1i−1 ⊕ Cout2i−1 0 < i ≤ 63

(3)

Cout2i =

{

(r9 + r10)0 i = 0
(r9 + r10)i + Cout2i−1 0 < i ≤ 63

=

{

r90 ⊕ r100 i = 0
(r9i ⊕ r10i ⊕ Cout1i−1) + Cout2i−1 0 < i ≤ 63

(4)

(a)

.

1 0

1

11 0 0

0

0163

63

63

63 63 62

62

0163
FFF

r3r3r3

r9r10

Cout2

Cout1

Cout2

Cout1Cout1

Cout2

r10 r9 Cout2

Cout1

r10 r9

(b)

Figure 3.2: Translating function r3 into a hardware operator: (a) r3 function, and (b) 64
1-bit operators with multiple-carry propagation.

40 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.3

struction collapsing by combining arithmetic operations, e.g., ADD, with bit-shifting
instructions: in fact, a single arithmetic operation takes place on each row of the re-
configurable unit but the interconnection network between rows is used to implement
the shifts, hence the collapsing. The notion of “function” is implicitly widely used
in ASIC and ASIP [Fis02], but not in a way that can be applied to general-purpose
processors. PRISC [Raz94] proposes to map operations on hardware-programmable
functional units (PFUs), and recently, Clark et al. [Cla03] proposed a method to
automatically extract candidate functions from programs, but, in both approaches,
the operations are not extracted at run time, and cannot span across multiple basic
blocks.

Our approach has three major assets: (1) in theory it applies to almost any
sequence of dependent instructions, (2) it doesn’t rely on ILP exploitation, and (3)
translating DFGs into functions requires only straightforward transformations.

3.3 Experimental Framework

We performed two sets of experiments: architecture-independent experiments which
aim at determining the potential of the approach, see Section 3.4, and experiments
on a superscalar processor coupled with the rePLay framework without optimization
(only the frame builder is used), see Section 3.5. We developed a specific toolset
to translate Alpha assembly instructions into circuit configuration macros. It can
be implemented either as a static compilation tool, a dynamic compilation tool,
or in hardware. On purpose, we developed a fully automatic toolset in order to
demonstrate that the added compiler and hardware complexity can be harnessed.

Translating dependent instructions into configuration macros. The four
phases of our optimization engine are shown in Figure 3.3: first, we dynamically split
the program execution trace into large chunks of consecutive instructions that we
call a trace, and we apply the next steps to each trace. Note that the trace size is
fixed for the architecture-independent experiments, and is variable in the superscalar
processor experiments, see Section 3.5. Next, data dependencies in the trace are an-
alyzed and the dataflow graph (DFG) for that trace is built as in Figure 3.1(d). Then
functions are selected within the DFG modulo the rules described in Section 3.4.2.
Finally, the truth table associated with each bit of the function is computed as well
as the associated carry chain functions described in Section 3.2 and Figure 3.2. The
LUT (Look-Up Table) configurations directly derive from the truth tables. The
algorithm and its implementation are detailed in Section 3.5.

Simulation methodology. In all experiments we used the SimpleScalar emu-
lator [Bur96] of the Alpha ISA, the SPECInt2000 benchmarks, as well as 9 of the
Olden benchmark suite [Rog95] (bh, em3d, health, mst, perimeter, power, treeadd,

3.4 POTENTIAL OF THE APPROACH 41

DFG Functionsinstructions
Assembly Configuration

macros

Figure 3.3: Phases of the optimization engine.

1

2

3

4

5

6

7

(a)
DFG1

1

2

3 4

5 6 7

(b)
DFG2

1

2 3 4 5 6 7

(c) DFG3

Figure 3.4: Different possible DFG shapes.

tsp and bisort) and 3 of the MiBench suite [Gut01] (patricia, tiff2bw and djpeg).
We tested 100 million consecutive instruction traces for each benchmark, focused
on the most time-consuming procedures (selected using profiling on full benchmarks
executions). The benchmarks were compiled using the Compaq Alpha compiler with
full optimizations (-fast). For the superscalar processor experiment, we used the
sim-outorder architecture [Soh90] and applied our transformations to rePLay
frames.

3.4 Potential of the Approach

3.4.1 Potential performance improvements

To evaluate the potential of the approach, we want to compute the theoretical
speedup over an idealized processor where all instructions that can execute in paral-
lel do execute in parallel. Thus performance improvements only come from executing
sequential instructions as collapsed functions. The idealized processor is defined as
having a 1-cycle ideal memory, perfect branch prediction, and infinite instruction
window, issue width, and reservation stations.

As explained in Section 3.2, the potential speedup is, in theory, determined by
the number of dependent instructions collapsed, i.e., 7 in the example of Figure 3.1.
However, consider the DFGs of Figure 3.4. DFG1 in Figure 3.4(a) represents a

42 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip
2

tw
olf bh

em
3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd ts
p

bi
so

rt

pa
tri

cia

tif
f2

bw
dj

peg
AVG

T
h

eo
re

ti
ca

l S
p

ee
d

u
p

16 inst.
32 inst.
64 inst.
128 inst.
256 inst.
512 inst.
1024 inst.

Figure 3.5: Theoretical speedup for different trace sizes.

sequence of 7 dependent instructions, like our example of Figure 3.1, resulting in
a theoretical speedup of 7. DFG2 in Figure 3.4(b) contains again 7 instructions
but it has 3 branches, one per output function, and the largest branch of the DFG
contains 4 instructions, thus, the maximum speedup is 4 in this case. Similarly,
for DFG3 in Figure 3.4(c), the theoretical speedup is 2, again with 7 instructions.
Therefore, to compute the theoretical speedup of a trace of instructions, we need to
identify all disjoint DFGs in the trace, i.e., DFGa is disjoint from DFGb if none
of the instructions of DFGa depends on an instruction in DFGb and reciprocally.
Then, the theoretical speedup of a DFG is equal to the size of its largest branch,
or, in other terms, to its critical path or height. Thus, the traces are partitioned
into disjoint DFGs, and the theoretical speedup of each DFG is calculated. The
theoretical speedup of a program trace is the average height of all DFGs in the
trace. An important limiting factor for the speedup is the trace size. The larger
the traces, the larger the DFGs and the speedup. Using 1024-instruction traces
and up to 40-input operators, the average theoretical speedup for all benchmarks
is 1.5 with a maximum speedup of 2.32 for the djpeg benchmark, see Figure 3.5.
Figure 3.6 shows the distribution of the height of DFGs as a percentage of the total
number of instructions executed, also using traces of 1024 instructions, averaged on
all benchmarks. While there are very large DFGs, i.e., over 250 instructions, many
DFGs are rather small. The factors limiting the size of the DFGs and how these
limitations can be overcome are discussed in Section 3.4.2.

3.4.2 Analyzing and overcoming the limitations of the approach

In theory, the whole program can be one huge DFG. In practice, DFGs need to
be split due to many factors, which we call DFG cuts. A cut is an instruction
that prevents further collapsing and thus reduces speedup opportunities. It is then
transformed into a function output of its parents’ DFG and becomes an input for
its childs’ DFGs. Besides these “true” cuts, the trace size limitation mentioned in

3.4 POTENTIAL OF THE APPROACH 43

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

0 50 100 150 200 250 300

DFG Height

P
er

ce
n

ta
g

e
o

f
T

o
ta

l E
xe

cu
te

d
 In

st
ru

ct
io

n
s

Figure 3.6: DFG height distribution.

0%

20%

40%

60%

80%

100%

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf bh

em
3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tsp
bis

or
t

pa
tri

cia

tiff
2b

w
djp

eg
AVG

P
er

ce
n

ta
g

e
o

f
cu

ts

Load cuts Non collapsible Carry from higher order Input cuts

Figure 3.7: Distributions of cuts.

44 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.4

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Number of inputs

All inputs (Physical inputs)

Register inputs

P
er

ce
n

ta
g

e
o

f
N

u
m

b
er

 o
f

E
xe

cu
te

d
 F

u
n

ct
io

n
s

Figure 3.8: Cumulative distribution of the number of inputs per function.

Section 3.4.1 introduces additional methodology-related cuts. The different types of
“true” cuts are the cuts caused by the number of inputs supported by the hardware
operator, the cuts caused by loads, non-collapsible instructions and the carries from
upper significant bits. Figure 3.7 shows the contribution of each cut as a percentage
of all cuts.

Number of function inputs. We call physical inputs both the register inputs
and the inputs corresponding to carries, see Figure 3.2(b). The maximum number
of physical inputs per function determines the size of the 1-bit hardware operators
used to implement functions. Since the hardware operator size is fixed, the maximum
number of inputs is fixed as well, and any DFG requiring more than the maximum
number of inputs must be cut. Figure 3.8 shows the cumulative distribution of the
number of inputs per function, averaged over all benchmarks, using 1024-instruction
traces. We observed that more than 80% of the functions require fewer than 10
physical inputs, so that implementing even large functions does not require large 1-
bit operators. In our implementation we have used 6-input logic blocks. Figure 3.9
confirms that increasing the number of inputs beyond 10 has a negligible impact on
the theoretical speedup.

Load instructions. For the moment, loads induce cuts because they cannot
be combined with subsequent dependent instructions, though we are currently in-
vestigating several ways to alleviate these cuts such as data preloading. Figure 3.10
shows the percentage of loads in each benchmark. While, on average, 24.43% of
executed instructions are load instructions, their irregular occurrence in DFGs still
enables large DFGs, as shown in Figure 3.6. Store and branch instructions are

3.4 POTENTIAL OF THE APPROACH 45

1

1.2

1.4

1.6

1.8

2

2.2

2.4

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf bh

em
3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tsp
bis

or
t

pa
tri

cia

tiff
2b

w
djp

eg
AVG

T
h

eo
re

ti
ca

l S
p

ee
d

u
p

5 inputs
10 inputs
20 inputs
30 inputs
40 inputs

Figure 3.9: Impact of the number of inputs on the theoretical speedup.

0

10

20

30

40

50

60

70

80

90

100

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf bh

em
3d

he
alt

h
m

st

pe
rim

ete
r

po
wer

tre
ea

dd tsp
bis

or
t

pa
tri

cia

tiff
2b

w
djp

eg
AVG

P
er

ce
nt

ag
e

of
 T

ot
al

 E
xe

cu
te

d
In

st
ru

ct
io

ns

Figure 3.10: Percentage of loads.

46 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.4

not cuts, they are exit points of DFGs. Load and store instructions are still con-
sidered collapsible : address computation instructions can be collapsed with loads
and stores, and value computation instructions can be collapsed with stores. Our
transformation engine detects pairs of statically dependent store/load and replaces
such “load cuts” with true register dependence. By static dependence, we mean a
store followed by a load which uses the same register and the same offset for address
computation and where the register is not modified between the store and the load.
Note that such a store/load pair may not necessarily be in the same basic block,
as the generated functions may span across more than one basic block. Dynamic
store/load dependencies are not detected.

We note that the main problem in loads is rather their chaining then their
frequency. Load chains occur frequently in complex data structures because of in-
directions and pointer chasing. If loads where independent, they could occur in
parallel, hiding the effect of the induced cuts. But when a chain of loads occurs,
each set of instructions between two loads (typically an address calculation) must
wait for the first load to complete before they begin executing, even if they are col-
lapsed. Figure 3.11 shows the average depth of loads for each benchmark. We define
the depth of a load as the number of dependent loads in the load chain to which
it belongs. The mcf and health particularly contains long chains of dependent
loads. Figure 3.12 shows the contribution of each each value of load depth in the
total loads.

Non-collapsible instructions. Like all other RISC codes, the Alpha binary
code contains many instructions that cannot be collapsed (e.g., system calls), or
which correspond to very costly hardware operators (e.g., floating-point divide). All
these instructions are DFG cuts. For the moment, we only collapse integer instruc-
tions add/sub, shift by constants, bit operations/manipulations, and conditional
branches. Figure 3.13 shows that, on average, benchmark traces contain 15.13%
of non-collapsible instructions. The eon and power benchmarks perform many
floating-point operations, hence the large number of non-collapsible instructions.

Carries from upper significant bits. Certain combinations of instructions
are treated as cuts due to specific carry propagation issues. Consider the example of
Figure 3.14 in which the most significant bit of (r1 + r2) is added to r6. Due to the
carry propagation in (r1+r2), the addition of r6 cannot start before (r1+r2) ends.
Therefore, the only way to collapse (X >> 63)+ r6 with (r1+ r2) is to add another
chain of 64 1-bit operators where the output of the most significant 1-bit operator of
(r1+r2) is fed into the least significant 1-bit operator of (X >> 63)+r6, see Figure
3.14. In other terms, either the operator chain is larger than the word size and it can
accommodate right shifts, or right shifts must be treated as cuts; the same problem
occurs whenever a carry comes from upper significant bits. To test the impact of

3.4 POTENTIAL OF THE APPROACH 47

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

gzip vp
r

gcc m
cf

cr
af

ty

par
se

r
eo

n

per
lb

m
k

gap

vo
rte

x
bzip

2
tw

olf bh
em

3d

hea
lth m

st

per
im

et
er

power

tre
ea

dd
ts

p

biso
rt

pat
ric

ia

tif
f2

bw
djp

eg
AVG

L
o

ad
 D

ep
th

Figure 3.11: Average depth of loads.

0%

20%

40%

60%

80%

100%

gzip vp
r

gcc m
cf

cr
af

ty

par
se

r
eo

n

per
lb

m
k

gap

vo
rte

x
bzip

2
tw

olf bh
em

3d

hea
lth m

st

per
im

et
er

power

tre
ea

dd
ts

p

biso
rt

pat
ric

ia

tif
f2

bw
djp

eg
AVG

>15

11 -> 15

6 -> 10

5

4

3

2

1

Depth

Figure 3.12: Distribution of load depth among all load cuts.

48 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.4

0

10

20

30

40

50

60

70

80

90

100

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf bh

em
3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tsp
bis

or
t

pa
tri

cia

tiff
2b

w
djp

eg
AVG

P
er

ce
nt

ag
e

of
 T

ot
al

 E
xe

cu
te

d
In

st
ru

ct
io

ns

Figure 3.13: Percentage of non-collapsible instructions.

add r1,r2,r3
srl r3,63,r3
add r3,r6,r7

(a)

....................

++ +....................

cout1cout1

11 0 0

1 0

62

63

0r60r61r663

cout2 1cout263 cout2 0r7 r7r7 0163

<<<

cout1

cout2 62

r1r2r1r263r1r2

r3

(b)

Figure 3.14: Cuts because of carries from upper significant bits: (a) assembly code, (b)
implementation.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf bh

em
3d

he
alt

h
m

st

pe
rim

ete
r

po
wer

tre
ea

dd tsp
bis

or
t

pa
tri

cia

tiff
2b

w
djp

eg
AVG

T
he

or
et

ic
al

 S
pe

ed
up

Cuts due to Upper
Significant Carries

Ignoring Cuts due to
Upper Significant Carries

3.28

Figure 3.15: Effect of relaxing the upper significant carries constraints.

3.5 IMPLEMENTATION 49

that choice, we have ignored the hardware consequences (cost) of carries from upper
significant bits and removed the corresponding cuts. As shown in Figure 3.15, further
performance improvements can be achieved by relaxing this constraints. In all other
experiments, we chose to treat such cases as cuts for hardware cost reasons, i.e., we
assume a “left-only” carry propagation.

3.5 Implementation

In this section, we first explain how functions are built, and then how this mechanism
can be implemented within a superscalar processor architecture using the rePLay
hardware framework [Pat01].

3.5.1 Generating DFG and functions

The optimization engine described in this section may be implemented either in
hardware or software, the rePLay framework is compatible with both types of imple-
mentation. We present below the different steps in the process of building functions,
and we illustrate this process with the example of Figure 3.1.

Building the DFG. Each instruction in the trace, i.e., the instructions of
Figure 3.1(b), are loaded in the DFGT (DataFlow Graph Table), with one entry per
instruction, see Figure 3.16.1 Consider instruction i1:addq r10,r9,r3: when
the instruction is stored in the DFGT, the flag OutFlag is set to indicate the
instruction is an output of the DFG being progressively built; when instruction
i2:subq r3,0x1,r3 is loaded, this flag will be reset because instruction i1:addq
r10,r9,r3 will no longer be a DFG output.

In the same time, we keep track of the data dependencies between instructions
through the Producing Output Table (POT). The POT is indexed by the instruction
destination register. Each entry contains an index to the DFGT, i.e., to the instruc-
tion that produces the corresponding register. For instruction i1, since r9 and r10
are inputs to the DFG, i.e., they are not generated by another DFG instruction, the
corresponding entries in the POT will not point to a DFGT entry. The combined
role of the POT and the DFGT is akin to the role of the ROB in a superscalar
architecture, except that we cannot use the processor ROB to perform that task
since function building is performed offline by the rePLay framework.

Generating the function corresponding to an instruction. Once a new
DFG instruction is loaded in the DFGT, we build the function corresponding to the

1Note that complex instructions, such as the Alpha Scaled Add instruction s4addq, are decom-
posed into several elementary operations, each corresponding to a DFG node, and thus to an entry
in the DFGT.

50 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.5

r0
r1
r2
r3

r3

OutOpnd2

0x1r3

Opnd1

subq

OP

Instruction i2

FRT
F1

F2

DFG inputs

Opnd1 Opnd2

Constants

Opnd1 type

Opnd2 type

POT

OP OutFlag FunctionPtr

DFGT

i1: addq r10,r9,r3

Function generation
engine

Update DFGT and FRT

Figure 3.16: Function generation.

instruction operation, or more exactly, we compose this operation with the functions
producing its source operands, creating a more complex function. For that purpose,
we send the instruction source operands to the Function Generation Engine (FGE),
see Figure 3.17. There are three types of operands, DFG inputs which are operands
not produced by other instructions in the DFG, constant inputs, and operands
produced by other instructions in the DFG. The first two types are simply sent to
the Function Generation Engine. If the operand is produced by another instruction,
then we send the function producing this operand as a truth table. Functions are
stored in the FRT (Function Repository Table) as 64-bit truth tables (for a maximum
of 6 inputs for each function), one per word bit, see Figure 3.18. Each DFGT entry
(instruction) contains an index to the corresponding function in the FRT. Besides
the truth table, the FRT also contains the number of inputs of the truth table. Each
bit of the operand is a (input list, truth table) pair. When the operand is just a value,
as for registers r9 and r10 of instruction i1, the number of inputs is 1 and the
truth table is the identity function (01).

To create the truth table of the composed function (the operation of the cur-
rent instruction composed with the functions creating the operands), the Function
Generation Engine performs as follows. For each possible combination of all input
variables (the input variables of both operands), the engine looks up the truth tables
of the operands, and uses these values to then look up the truth table of the oper-
ation itself. The truth table of the operation is stored in a library of operations in
the Function Generation Engine. Besides the truth table, the library also indicates
if additional function variables must be introduced, such as (and usually) carries.
For instance, for instruction i1, the operands are r9 and r10 with identity truth
tables. After looking up the library of operations, the engine sees that the carry

3.5 IMPLEMENTATION 51

r92

r92 Cout1r10 1 011010012

2Fr3

r9 2

r9 r10 Cout1 For

Generate Truth Table

Create Input List

Read r10

Read r9

Generate Function

22 1
r10

To FRT

Cout1 = 000 to 111

2
Evaluate F[r9 ,r10 ,Cout1]

2 1

2 1

2

2

inputs
Truth
Table

Operand2

r10 2

inputs
Truth
Table

Operand1
ncarriesOP/Rank I1 rank

ADD/2 1 2 2 1 01101001

F

00010111

Cin_rankI2 rank

Library of operations

Cout

01 01

Figure 3.17: Function Generation Engine: generating bit 2 of node n2.

F
n2

r9 0
r10

0r9 0 r10
0

r9 1 r9 1 Cout1
0

r10
1Cout1

0
r10

1

bit0

bit63 r9 r10 r9 r10 Cout1
63 63 63 62

Cout1
63 62

bit1 01101001

01101001 00010111

00010111

F Cout1 Cout2 Coutn

0110 0001

Figure 3.18: Function Repository Table (FRT).

52 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.5

OutOutOutOut

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

Routing Network

Function

bit 63

Function

bit 2

Function

bit 1

Function

bit 0

01263

Input from Host Processor

CrOutCrOutCrOutCrOut

Figure 3.19: Implementation of functions.

must be one of the function inputs since the operation is an addition, so there are
three input variables: r9kr10kCout1k−1 for bit k of the composed function. Then,
the truth table of the composed function (in this case, just an addition) is output (in
this case, the adder truth table). Function truth tables are then stored in the FRT,
and the corresponding index is stored in the DFGT. The whole process for instruc-
tion i2:subq r3,0x1,r3 is similar except that the POT entry corresponding to
r3 will point to the i1 entry in the DFGT. The function corresponding to this entry
will thus be passed to the Function Generation Engine as well as the constant 0x1.

Cuts. Input operands that are dependent on instructions that were identified
as cuts (see Section 3.4) are treated as identity functions also.

Filtering functions. Depending on the latency of the Function unit, a sequence
of collapsed instructions may execute slower in the Function unit than in the normal
execution units, if the number of collapsed instructions is small. For example, if a
function is collapsing three dependent 1-cycle latency instructions, the Function
unit should execute in less than three cycle to execute faster. Assuming a 1-cycle
ALU latency, we filter candidate functions by selecting only those disjoint DFGs
(see Section 3.4) with height greater than the Function unit latency. Instructions
that do not belong to these selected DFGs are marked as non-collapsible, and are
executed in the normal execution units. This heuristic allows better utilization of
all functional units and prevents non-appropriate functions from slowing down the
execution.

3.5.2 Hardware implementation of functions

Figure 3.19 shows the implementation of functions as an additional large functional
unit. As explained in Section 3.2, we implement functions using a set of 64 1-bit
chained operators. These operators represent one of the bits of an n-input function,
as explained in Section 3.2. Since the functions vary constantly from one trace to

3.5 IMPLEMENTATION 53

Fetch width 16

Issue / Decode / 8
Commit width

RUU size 1024
(Inst. window- ROB)

LSQ size 128

ExeUnits 8 IALU, 4 IMULT,
4 FPALU, 4 FPMULT

Function units 8

Branch Combined,
4K entries bimodal,

and 2 level Gap predictor,
8K 2nd level entries,

14 history wide ,
1K meta-table size

7 cycle BR resolution

Memory Latency 70 cycles

L1 DCache 32kB, 1 cycle

L1 ICache 16kB, 1 cycle

L2 Unified Cache 1MB, 6 cycle

Table 3.1: Baseline configuration of the processor core.

another, we use reconfigurable logic to implement the 1-bit operators. However,
it is important to note that our operators need not bear the same limitations as
traditional FPGAs: (1) the chained operators only contain combinational logic, no
sequential logic is necessary, and (2) only one row of operators is needed. The
operators are linked in an unusual but simple manner: multiple carries are prop-
agated from operator i to higher order bits only, therefore avoiding the complex
interconnection networks that usually account for more than 90% of on-chip space
in FPGA circuits [Com02]. On the other hand, our approach relies on functions
with a significant number of inputs, resulting in larger logic blocks. As mentioned
in Section 3.4.2, we assumed a maximum of 6 physical inputs for each bit of the
Function units.

3.5.3 Implementing functions using the rePLay hardware framework

The two major implementation issues of our approach are the overhead of dynami-
cally building DFGs and functions on-the-fly, during execution, and assembling large

54 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.5

traces. The rePLay environment proposed by Patel et al. [Fah01][Pat01][Pat00] can
partially address both issues.

The rePLay framework provides a dynamic optimization support for building
large traces of instructions (frames) after retirement. Moreover, the frames are
transformed offline, i.e., out of the critical path. We implemented the rePLay ar-
chitecture framework, augmented with our function optimization engine and the as-
sociated Function units, in the SimpleScalar simulation environment. We assumed
a future scaled-up 8-way superscalar processor architecture, see Table 3.1 for the
modified parameters. Figure 3.20 shows the core processor together with rePLay
and the function mechanism which includes several Function units. Our optimiza-

Optimization
Engine

Recovery

Mechanism

Fetch Engine

Execution EngineConstructor
Frame

Frame
Cache ICache

Decode and Issue Unit

Instruction Fetch Unit

Register Update Unit

Memory

Registers
Load

Sequencer

Register

File

Completing Inst.

Macro
Inst.

Branch
Promotion

Function

Builder

DFG

Builder

Frame
Buffer FU FUFU Function

unit

Function

unit

Functions
Configurations

Figure 3.20: The core architecture.

tion mechanism can be built on top of the optimizations proposed in [Fah01] which
improve ILP while our techniques focus on ILP-deprived code sections. To outline
the impact of the Functions mechanism, we implemented rePLay without frame
optimizations; thus the performance improvements reported in Section 3.5.4 solely
correspond to the Functions mechanism.

The rePLay framework collects traces of committed instructions to form “frames”.

3.5 IMPLEMENTATION 55

0

50

100

150

200

250

300

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf bh

em
3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tsp
bis

or
t

pa
tri

cia

tiff
2b

w
djp

eg
AVG

F
ra

m
e

S
iz

e
in

 N
um

be
r

of
 In

st
ru

ct
io

ns

Figure 3.21: Average frame size.

0

10

20

30

40

50

60

70

80

90

100

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf bh

em
3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tsp
bis

or
t

pa
tri

cia

tiff
2b

w
djp

eg
AVG

P
er

ce
nt

ag
e

of
 E

xe
cu

te
d

In
st

ru
ct

io
ns

Figure 3.22: Dynamic instructions coverage.

The frames are frequently executed sequences of instructions. The frame construc-
tor adds each committed instruction into a frame construction buffer, until a branch
with a non-highly stable behavior (taken/not taken for conditional branches or con-
stant target addresses for indirect branches) is encountered. Branches with highly
stable behavior are called promoted branches in the rePLay framework [Pat98], and
are stored in a branch bias table. When a non-promoted branch is encountered or
when the frame reaches a maximum size of 256 instructions, the frame is passed to
the optimization engine to build functions (frames smaller than 32 instructions are

56 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.5

0.9

1

1.1

1.2

1.3

1.4

1.5

gzip vp
r

gcc m
cf

cr
af

ty

par
se

r
eo

n

per
lb

m
k

gap

vo
rte

x
bzip

2
tw

olf bh
em

3d

hea
lth m

st

per
im

et
er

power

tre
ea

dd
ts

p

bis
ort

pat
ric

ia

tif
f2

bw
djp

eg
AVG

L
o

ca
l S

p
ee

d
u

p

1 cycle

2 cycles

3 cycles

4 cycles

5 cycles

6 cycles

Figure 3.23: Local speedup.

0.9

1

1.1

1.2

1.3

1.4

1.5

gzip vp
r

gcc m
cf

cr
af

ty

par
se

r
eo

n

per
lb

m
k

gap

vo
rte

x
bzip

2
tw

olf bh
em

3d

hea
lth m

st

per
im

et
er

power

tre
ea

dd
ts

p

bis
ort

pat
ric

ia

tif
f2

bw
djp

eg
AVG

G
lo

b
al

 S
p

ee
d

u
p

1 cycle
2 cycles
3 cycles
4 cycles
5 cycles
6 cycles

Figure 3.24: Global speedup.

discarded to avoid saturating the optimization engine). Our back-end transforma-
tion engine forms the DFG for each frame and transforms the trace of instructions
into a trace of functions or macro-instructions, see Section 3.5.1.

Because it is difficult to estimate a priori the exact delay of the optimization
engine (whether implemented in hardware or software), we assumed a 1000-cycle
optimization engine delay. Fahs et al. showed in [Fah01] that the optimization delay
may have very little impact on performance. We tested a 10000-cycle delay and only
observed an average performance slowdown of less than 1%. The generated functions
are cached into the frame cache and are directly forwarded to the Function units
upon a frame cache hit. Function units may be configured while they are scheduled
provided there is a sufficient number of functional units, as originally proposed in
the PipeRench architecture [Cho00]. An important aspect of the rePLay framework
is that, once dispatched, the frames should be run to completion. Therefore, branch
instructions in frames are replaced with assertions. When an assertion is not verified,
rePLay provides a mechanism to revert the architectural state to the beginning of
the executed frame. We modeled this mechanism using a 10-cycle penalty. The
replacement of branches by assertions fits well our approach. Since each conditional
branch is transformed into a 1-bit function, as shown in the example of Figure 3.1,
collapsing the function can speed up the branch resolution which, in turn, can reduce
the frame misprediction penalty. More generally, collapsing functions corresponding

3.5 IMPLEMENTATION 57

to branch conditions can speed up branch resolution, using similar principles but a
different technique than Anticipation [Far98].

We parameterized the rePLay environment as follows: a 32K-entry bias table
for direct branches, a 4K-entry bias table for indirect branches, a 14-branch history
is used as a hashing key to the bias table, a branch is promoted to a highly bi-
ased branch after a threshold of 16 consecutive stable behavior, a 128-frame buffer
to store frames while they are processed, a 4-way associative frame cache [Fah01]
that can store up to 4K frames and 128K macro-instructions, each frame in the
frame cache is tagged using a history path of 4 branches. Upon hit, the frame is
dispatched, otherwise standard instructions are fetched from the instruction cache
and dispatched.

3.5.4 Performance analysis of the implementation

Efficiency of frame building. The main asset of rePLay is its ability to dynamically
build large sequences of instructions. We experimentally observed that the average
frame size is 147 instructions, see Figure 3.21. On average, 65% of all instruc-
tions instances effectively belong to optimized frames, see Figure 3.22. Instruction
coverage is limited by non-highly biased branches, too small frames (less than 32
instructions), frame cache misses and mis-speculated frames.

Speedup achieved with the function mechanism. Consequently, we distinguish the speedup
achieved on the transformed traces, i.e., the local speedup and the global speedup.
We use the scaled-up 8-way superscalar architecture (see Table 3.1) coupled with
rePLay as the baseline configuration. We have yet to implement a hardware model
of the function unit at the circuit level to precisely estimate its latency. Even then,
there are multiple possible architecture choices: since these chained operators im-
plement multiple but straightforward carry propagation, they can benefit from the
the fast but complex carry-propagation schemes that were specifically designed for
speeding up FPGA-based carry chains [Hau00], and which are different from the
standard high-performance adder carry chains [Zie01]. Therefore, we varied the la-
tency of the Function unit from 1 to 6 cycles. Assuming a 1-cycle Function unit,
Frames transformed into functions execute 19% faster than the baseline configura-
tion on average, with a maximum of 49% for the gzip benchmark, as shown in
Figure 3.23. Because of the still limited coverage of the rePLay environment, the
global performance improvement is only 12% but with strong variations up to 39.6%
for the bisort benchmark, see Figure 3.24. Codes with large sets of sequential and
dependent instructions particularly benefit from the mechanism. The low speedups
are mainly due to high percentage of non-collapsible instructions (eon and power)

58 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.5

1

2

3

4

5

6

7

8

9

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf bh

em
3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tsp
bis

or
t

pa
tri

cia

tiff
2b

w
djp

eg
AVG

S
p

ee
d

u
p

COL AR COLAR COL/AR

Figure 3.25: Combining instruction collapsing with perfect address prediction.

or long chains of dependent loads that limit the height of collapsed instructions (mcf
and health).

Speedup of instruction collapsing under idealistic conditions. In order to study the po-
tential improvement of instruction collapsing in a superscalar processor, we investi-
gated the speedup we obtain under three idealistic conditions:

• AR: Address always Ready, in other words we considered a perfect address
prediction mechanism to relax the constraint of long chains of loads.

• PC: Perfect Cache.

• PR: Perfect RePLay, where we assumed that the rePLay framework collects
frames that are all useful and not speculative, PR environment is associated
with a perfect branch prediction.

We studied each of these environments alone, and combined with our collapsing
mechanism (COL), and also with the other two ideal environments. We assumed
that the hardware operators can support up to 20 physical inputs, and operate in
a 1-cycle delay. Also, because the SimpleScalar sim-outorder model splits each

3.5 IMPLEMENTATION 59

1

2

3

4

5

6

7

8

9

10

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf bh

em
3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tsp
bis

or
t

pa
tri

cia

tiff
2b

w
djp

eg
AVG

S
p

ee
d

u
p

COL PC COLPC COL/PC

Figure 3.26: Combining instruction collapsing with perfect cache.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

gz
ip vp

r
gc

c
m

cf

cr
af

ty

pa
rs

er eo
n

pe
rlb

m
k

ga
p

vo
rte

x
bz

ip2 tw
olf bh

em
3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tsp
bis

or
t

pa
tri

cia

tiff
2b

w
djp

eg
AVG

S
p

ee
d

u
p

COL PR COLPR COL/PR

Figure 3.27: Combining instruction collapsing with perfect RePLay.

60 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.5

0

1

2

3

4

5

6

7

8

9

10

gzip vp
r

gcc m
cf

cr
af

ty

par
se

r
eo

n

per
lb

m
k

gap

vo
rte

x
bzip

2
tw

olf bh
em

3d

hea
lth m

st

per
im

et
er

power

tre
ea

dd
ts

p

biso
rt

pat
ric

ia

tif
f2

bw
djp

eg
AVG

A
IP

C

base COL AR PC COLAR COLPC PR ARPC

Figure 3.28: Alpha IPC (1).

memory operation to two distinct operations (address calculation and memory op-
eration), we assumed an issue width of 16 to allow issuing of 8 memory operations
simultaneously. Figure 3.25, 3.26 and 3.27 show the effect of combining the col-
lapsing mechanism (COL) with each of the three idealistic environments AR, PC
and PR respectively, the speedup of collapsing alone as well as the speedup obtained
under the ideal environment without collapsing are shown in addition to the speedup
we obtain if we combine the two mechanisms, the line shows the speedup of collaps-
ing (COL) applied to the perfect environment. We noticed that applications that
particularly suffered from high cache miss rate and long chains of loads, like mcf and
health, could better benefit from instruction collapsing. Still, on the average, the
performance improvement of collapsing was just added to the performance we obtain
if we apply the ideal environment alone. On the other hand, Figure 3.27 shows that,
if we apply a perfect trace collection mechanism, we can substantially benefit from
collapsing where on average, we obtain a speedup of 38% over perfect rePLay (PR)
compared to 8% initial performance improvement. Furthermore, some benchmarks
could have an improvement in performance higher than the theoretical speedup we
may obtain with collapsing, for example the gzip benchmark has a speedup of 2.32
while the average height of collapsed sequences assuming 256 instruction trace size
is 1.67. This is principally because we could benefit from the superscalar approach

3.6 CONCLUSIONS 61

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

gzip vp
r

gcc m
cf

cr
af

ty

par
se

r
eo

n

per
lb

m
k

gap

vo
rte

x
bzip

2
tw

olf bh
em

3d

hea
lth m

st

per
im

et
er

power

tre
ea

dd
ts

p

biso
rt

pat
ric

ia

tif
f2

bw
djp

eg
AVG

A
IP

C

base COLARPC COLPR ARPR COLARPR ARPCPR COLPCPR COLARPCPR

Figure 3.29: Alpha IPC (2).

by executing several functions in parallel thus adding Function Level Parallelism
(FLP) to the instruction collapsing.

Finally, Figure 3.28 and 3.29 shows the equivalent Alpha Instructions Per Cycle
(AIPC) for different combinations of collapsing and idealistic mechanisms. We notice
that under some ideal conditions, thanks to instruction collapsing, we obtain IPC
higher than 8 which is the maximum IPC the superscalar can achieve.

3.6 Conclusions

In this work, we presented an approach for improving the performance of sequences
of dependent instructions by expressing these sequences as functions, collapsing them
into hardware operators and taking advantage of circuit-level redundancy. Our ap-
proach does not rely on ILP exploitation, and the associated software optimizations
are fairly simple.

We tested an implementation of this approach on a scaled-up superscalar proces-
sor with the rePLay framework, and we observed an average performance improve-
ment varying from 3.5% to 19% on optimized code sections.

We are currently investigating the coupling of the function mechanism with ad-
dress prediction mechanisms to remove many of the cuts due to load instructions.

62 FROM SEQUENCES OF DEPENDENT INSTRUCTIONS TO FUNCTIONS : AN
APPROACH FOR IMPROVING PERFORMANCE WITHOUT ILP OR SPECULATION 3.6

Removing some of the cuts will increase the average function size and the overall
speedup.

Also further work should be done to improve trace collection, for example using
iterative compilation techniques, in order to better benefit from instruction collaps-
ing.

Chapter 4
Load Squared: Adding Logic Close to
Memory to Reduce the Latency of
Indirect Loads with High Miss Ratios

4.1 Introduction

The different reconfigurable architectures and grid architectures proposed in Chap-
ter 2, as well as our proposed mechanism to collapse instructions to functions exploit
on-chip space differently by mapping part of the application directly to hardware.
Still, memory accesses, especially load instructions are the major obstacles to map
larger parts of the application to hardware. Indirect memory accesses occur in a
wide range of data structures (lists, graphs, sparse matrices,. . .) and programming
constructs (e.g., linkage tables a.k.a global offset tables) and can induce severe per-
formance degradations. However, to the best of our knowledge, only prefetching
schemes have been proposed to tackle them: for instance, Roth et al. [Rot98] pro-
posed a hardware prefetching scheme for efficiently traversing pointer-based data
structures (graphs, lists), and more recently Cooksey et al. [Coo02] proposed a
tagged-prefetching-like scheme for indirect accesses that showed significant poten-
tial for commercial applications. However, the scope of such schemes may be limited
by the difficulty of properly identifying indirect memory accesses.

In this work, we propose a hardware scheme for reducing the latency of many
indirect memory accesses that relies on two key features: (1) a way to identify
indirect memory accesses using simple hardware to track chains of dependent loads,
rather than “guessing” the occurrence of indirect accesses as in prefetching schemes,
and (2) logic (and some tables, see below) to perform indirect loads as close as

63

64 LOAD SQUARED: ADDING LOGIC CLOSE TO MEMORY TO REDUCE THE
LATENCY OF INDIRECT LOADS WITH HIGH MISS RATIOS 4.2

possible to main memory (in the memory controller, as evaluated in our experimental
set-up, or possibly in memory) in order to reduce the total indirect load memory
latency. Moreover, our scheme applies not only to complex data structures traversals,
but also to very irregular and hard to predict indirect accesses such as accesses to
linkage tables and sparse matrices accesses. Note that access through the linkage
table is extremely common due to two factors. One is preemption: A symbol can
be preempted if some time after linkage, the object it refers to, or the address of
that object, may change. In Linux, all symbols but the internal ones (local data
of procedures, static procedures and variables) can be preempted. The second is
position-independent code (PIC). For instance, ELF linkers support PIC code with
a linkage table in each shared library that contains pointers to static data referenced
in the main program. The dynamic linker resolves and relocates all of the pointers
in the linkage table. The sad thing is, only one read was required by the algorithm;
the indirection here is only due to software convention.

The general code pattern tackled by our scheme is:

load b = [a]
add c = b+d
load v = [c]

which corresponds to most indirect accesses. (We use the Alpha ISA, whose ldq
instruction uses a base register and an offset. Thus, code patterns we target may
not have an intervening add.) In a nutshell, our method operates as follows: the
dataflow dependence between two nearby load instructions is identified and recorded,
the behavior of both loads (hit/miss) is recorded and if both are found to miss
frequently, then the second load is dynamically replaced by a new load instruction,
called load squared, which takes two arguments, the address a of the first load and
displacement d. The load squared instruction returns the value stored at address
[a]+d, where [a] is the content of the pointer-sized location pointed to by a. Note
that two loads use address a: the first load instruction, and the inserted load squared
instruction.

We applied this scheme to all SpecInt and SpecFP benchmarks [Hen00]. Provid-
ing results for all SPEC benchmarks is important for two reasons: first, it prevents
us from showing only favorable results. Second, it shows that, even though the per-
formance speedup we get are not always remarkable, we slow none of them down.
We also show results on 9 of the 10 Olden benchmarks [Rog95]. (We could not make
voronoi execute correctly.)

We present a state of the art of related work in Section 4.2. In Section 4.3, we
present the principles and implementation of our scheme, in Section 4.4, we present
the experimental framework and the performance evaluation in Section 4.5.

4.2 RELATED WORK 65

4.2 Related Work

4.2.1 Linked data structures traversal.

Several software-based prefetching techniques [Lip95; Luk96; Kar00] proposed com-
piler optimizations for inserting instructions to early-prefetch linked data struc-
tures. Roth et al. [Rot98] proposed a hardware mechanism called dependence-based
prefetching that dynamically identifies loads that access linked data structures, col-
lects them and executes them speculatively in a prefetch engine to slip ahead of
the execution. They also classified loads into recurrent load, traversal loads and
data loads. Recurrent loads are loads which produce addresses consumed by future
instances of themselves (e.g. p=p->next), traversal loads are class of loads that
produces addresses for pointer loads other then themselves, and data loads are load
data other than addresses. Our mechanism addresses loads that depend on either
recurrent or traversal loads.

Beside the speculative nature of dependence-based prefetching, these mechanisms
assume that there are enough non-load instructions for the prefetching engine to
run ahead of the execution; moreover, dependence-based prefetching has the same
caveats as all prefetching schemes, it does not reduce the overall latency of indirect
accesses but only hides part of it. Also, the same authors later proposed [Rot99]
to add jump pointers that are used to prefetch future nodes in a linked list; the
approach relies on making pointers explicit in data structures.

Cooksey et al. proposed [Coo02] a content-directed data prefetching mechanism
that searches for virtual addresses in data fetched from memory. By then prefetching
these addresses, the mechanism implements a form of pointer chasing. However,
because the mechanism relies on guessing which addresses are pointer addresses, the
number of useless prefetches or the number of missed prefetching opportunities can
be significant. For example, we observed in ammp that, when the first next address
is read in a linked list of relatively “large” nodes (larger then the prefetched line
size), the prefetcher will only partially prefetch the node, and since the next pointer
is defined at the end of the node, the prefetcher fails to get the next address. A
similar approach [Col02] proposes to store pointer addresses in a cache rather than
guessing them on-the-fly.

Bekerman et al. [Bek99] proposed to enhance a stride address prefetcher with a
correlated load-address predictor to predict linked data structures addresses. Again,
this mechanism does not efficiently handle long load dependencies, if the amount of
work to overlap is not sufficient. Besides, correlated load address predictor needs
prior traversal of a data structure in order to properly learn the correlation. Hence,
the first traversal of a data structure, which is more likely to miss in the cache
hierarchy, may not benefit from the approach.

66 LOAD SQUARED: ADDING LOGIC CLOSE TO MEMORY TO REDUCE THE
LATENCY OF INDIRECT LOADS WITH HIGH MISS RATIOS 4.2

List
processor

LPT

Memory
Aux

Memory	
Heap

Control Stack &
Environment

CPU
Evaluation
processor

Figure 4.1: Lisp processor architecture.

Solihin et al. [Sol02] proposed a User-Level Memory Thread (ULMT) that can
be located either in a memory-side logic or integrated in the DRAM. The ULMT
is a correlated prefetcher that sends prefetched data to the L2 cache of the main
processor. Also, Yang et al. [Yan00] proposed to attach a prefetcher to each level of
the memory hierarchy to push data to the processor rather than pulling data from
the memory.

Pleszkun et al. presented in [Ple86] a decoupled architecture for Lisp list access.
This is one of the few research works that specializes hardware for a certain data
structure (lists). Figure 4.1 shows the proposed architecture, which is organized as
two processing units: the List Processor (LP) and the Evaluation Processor (EP).
the LP allows efficient memory accesses and management through a translation
table (LPT) that virtualizes lists to the EP. That is, the EP accesses elements
using list primitives independently from their storage in memory. Further decoupled
architectures are discussed in Section 4.6.

4.2.2 Memory-side logic.

FlexRAM [Kan99] is a distributed architecture where compute nodes are attached
to local memories. It is more powerful and more complex than what we suggest. It
also introduces a new programming model, which we don’t.

Impulse [Car99] is a memory controller equipped with address translation hard-
ware. Its architecture is therefore close to our work, but its goal vastly different:
Impulse allows the controller to access shadow addresses, i.e., legitimate addresses
that are not backed by DRAM. This feature in turn allows applications and/or the
compiler to deploy optimizations like mapping noncontiguous addresses to contigu-
ous shadow addresses, thereby improving spatial locality.

4.2 RELATED WORK 67

 7

Vector Reg.
Elements

ALU1

FLAGS

LSU

ALU0

LANE 1

Vector Reg.
Elements

ALU1

FLAGS

LSU

ALU0

LANE 2

Vector Reg.
Elements

ALU1

FLAGS

LSU

ALU0

LANE 3

$I $D

MIPS
Core

I/O

Vector Reg.
Elements

ALU1

FLAGS

LSU

ALU0

LANE 0

BANK
DRAM

 0

256b

BANK
DRAM

 1

Memory Crossbar

Vector
Control

64b

256b 256b

BANK
DRAM

Figure 4.2: The VIRAM architecture.

4.2.3 Intelligent memories.

The increasing processor/memory gap motivated a lot of research to physically mi-
grate computations in the memory in order to benefit from a minimum access la-
tencies.

Intelligent RAM (IRAM) unifies logic and DRAM on a single chip [Pat97]. IRAM
offers about a 100x increase in internal bandwidth and almost a 10x latency reduction
because the processor logic is physically in the memory.

Because of the low latency of IRAM and its high interleaved nature, IRAM
naturally matches the need for a vector processor (VIRAM). Figure 4.2 shows the
VIRAM architecture. The VIRAM includes a single issue 64-bit MIPS pipelined
core and a vector coprocessor. The register and datapath resources in the vector
coprocessor are partitioned vertically into four identical vector lanes to allow higher
scalability and lower complexity. The four lanes receive identical control signals on
each clock cycle.

But IRAM is slower (by a factor of 1.3 to 2.0) because of DRAM technology,

68 LOAD SQUARED: ADDING LOGIC CLOSE TO MEMORY TO REDUCE THE
LATENCY OF INDIRECT LOADS WITH HIGH MISS RATIOS 4.2

A quad

Processor

Quad
interface

Memory
system of
16 8KB
SRAMs

Crossbar interconnect

Figure 4.3: Smart memories architecture.

and assume that since DRAM chips on PCs has been shrinking since 1986 [Pat97],
many PCs may require only a single DRAM chip, which does not favor scalability
for high performances even if this argument is valid for portable personal devices.
Therefore VIRAM particularly suits embedded multimedia benchmarks [Koz02] and
regular vector processing applications.

Smart memories [Mai00] is a tile reconfigurable architecture. It contains an
array of processor tiles and on-die DRAM memories connected by a packet-based,
dynamically routed network. A tile can contain a 64-bit, 2-issue, in-order processor
with 64KB of on-die cache. Each four processor tiles are clustered into a quad to
support large scale computations as shown in Figure 4.3. Alternatively some tiles
may be replaced by embedded DRAM (2-4 MB per tile). The memory system in each
tile is highly configurable to match the application demands. The reconfigurable
nature of the memory system allows the processor to support different execution
modes to exploit different types of parallelism in the target application (ILP, DLP,
TLP) like the TRIPS architecture [San03]. Still, the proposed architecture does not
fully exploit the proximity of the processor units from the DRAM tiles by proposing
an efficient way to program such architecture.

Active Pages [Osk98] shift data-intensive computations to the memory system.
Figure 4.4 shows the basic architecture of Active Pages. Active Pages consist of a
page of data in DRAM and a set of associated functions that operate on that data.

The authors propose a model of computation which partitions applications be-
tween a processor and an intelligent memory systems. They also discuss coordina-
tion, computation scaling and data manipulation issues. However, their model lacks
an intuitive programming language extension.

4.3 PRINCIPLES 69

R
ow

 S
el

ec
t

DRAM

Sense−amplifiers

Column Select

Page Cache

Computational Logic Computational Logic

Page Cache

Column Select

Sense−amplifiers

DRAM

R
ow

 S
el

ec
t

DRAM DRAM

R
ow

 S
el

ec
t

R
ow

 S
el

ec
t

Sense−amplifiers Sense−amplifiers

Column SelectColumn Select

Page Cache Page Cache

Computational Logic Computational Logic

Figure 4.4: Active Page architecture.

Initially, Active Pages where proposed on RADram (Reconfigurable Architecture
DRAM), a memory system based upon the integration of DRAM and reconfigurable
logic. The authors later investigated in [Osk99] to replace the reconfigurable logic
of the Active Pages by a scalar processor or a VLIW processor in the computational
logic. They demonstrated that the VLIW Active Pages perform as well as their
reconfigurable counterparts but with substantial additional benefits in power, area,
and programmability.

In general, intelligent-memory approaches allow efficient data accesses, and presents
an important opportunity for applications that require high bandwidth and low la-
tency. Nevertheless, aggressive superscalar processors are still dominating in terms
of performances and provide higher computation throughput. Furthermore, a lot of
the proposed architectures does not provide efficient way to program them or deal
with complex data structures. The Load Squared approach provides a way to mi-
grate critical address calculation parts of the application closer to memory without
having to pay the high cost and architectures changes of intelligent memories.

70 LOAD SQUARED: ADDING LOGIC CLOSE TO MEMORY TO REDUCE THE
LATENCY OF INDIRECT LOADS WITH HIGH MISS RATIOS 4.3

c’

1

2

4

5

6

7

9

38

1

2

1b

5

7

8

6
4 3

6b

2b

(b)

a

a’

d

c=b+d

c’

v

v

L1 and L2 caches DTLB

Translation

c’

Memory controller

b a’

Memory (M)

Processor (P)

ba’c’

c=b+d

(a)

v b

Memory (M)

L1 and L2 caches DTLB

c

a

Processor (P)

Memory controller

a’

Figure 4.5: Load squared architecture (a) Normal Operation (b) Load Squared Operation.

4.3 Principles

The general principle of our approach is to reduce the overall latency of two de-
pendent loads, and more precisely, the time necessary to perform two round-trips
to memory, in case both loads miss. As noted in the introduction, the value of the
first load is brought back to the processor for the sole purpose of computing the
address of the dependent load, and in many cases, this computation simply consists
in adding an integer offset to the data fetched by the first load. If memory-side logic
is added to perform such computations, it is no longer necessary to go back to the
processor to compute the address of the second load, so that the overall latency of
the two dependent loads can be significantly reduced. Observe again that this logic
may be implemented in memory, even though we assume in our simulations that it
is located in the memory controller.

Figure 4.5 describes both the behavior of two dependent loads (a) on a simplified
standard memory hierarchy, and (b) on a memory hierarchy augmented with the load
squared technique. (Part (c) is described in Section 4.4.) In the two cases, we assume
two dependent load instructions, where the first one has issued a virtual address a
corresponding to data b, which is used to compute a new virtual address c for the
second load instruction. On a standard memory hierarchy, the two requests are
processed as follows. In Step 1, the processor sends virtual address a to the first
level cache and the TLB. Assuming the first load misses, physical address a’ is sent
to the memory-side logic in Step 2. The memory-side logic accesses main memory M

4.3 PRINCIPLES 71

in Step 3 and value b (along with its corresponding cache line) is sent to the cache
and the processor in Step 4. The processor computes virtual address c=b+d in Step
5 and in Step 6 makes a second request to the memory hierarchy through Steps 7
to 9.

Figure 4.5(b) shows the load squared operation. In this example, we assume
both loads miss, and we will see in the next section that the mechanism includes a
predictor for deciding when both loads are most likely to miss and for applying the
load squared technique only in this case. In Step 1, virtual address a is sent to the
cache (miss) then to the memory; the mechanism identifies the pairs of dependent
loads, and when the second load is ready to issue, it is replaced by a load squared
which sends the address a of the first load along with the offset d to memory. In Step
3, the memory-side logic sends address a to memory, gets data b in Step 4, computes
address b+d in Step 5, then immediately sends the new virtual address c to memory
after translating it in its own TLB in Step 6. Following the idea of the hardware
page walker on Itanium 2 [Int], address translation is done by the memory-side logic
entirely in hardware. This assumes the page table follows a predefined format, which
the OS must follow. In Step 6, a fetch of v at address c’ is sent to memory; that
request returns to the processor in Steps 7 and 8.

Area Cost. The main area cost of the mechanism lays in the additional TLB
and the adder located in the memory-side logic, and the prediction tables used to
detect dependent loads which both miss (see next section). Several modifications
are also necessary in the cache controller and the miss address file.

Coherence. The value of v is speculative since the content of memory may
not be up-to-date at this step: if some of the cache levels are write-back, they may
contain a dirty line that contains the most up-to-date content of address c’. (Even if
all cache levels are write-through, the request from the memory-side logic may arrive
to memory just before the copy back is complete.) To ensure memory coherence,
the memory-side logic sends a read request for address c’ to all cache levels, at
Step 6b, simultaneously with the memory fetch in Step 6. If the cache read is a hit,
the value in the cache is at least as recent as the value read from memory, and this
value is sent by the cache to the processor (not to the memory-side logic) as the final
result of the load squared. Eventually, value v read in Step 7 from memory is sent
by the memory-side logic to the main processor. This value is propagated by the
cache hierarchy and is simply ignored by the miss address file. Alternatively if the
read is a miss, no further action is taken by the cache at this point (except perhaps
for initiating a fill request) and the memory read initiated by the memory-side logic
at Step 7 provides v.

Note also that a coherence issue also arises when a load squared is followed by
a store. In this case, the processor cannot disambiguate the load squared from the

72 LOAD SQUARED: ADDING LOGIC CLOSE TO MEMORY TO REDUCE THE
LATENCY OF INDIRECT LOADS WITH HIGH MISS RATIOS 4.3

 ldq r1,4(r5)

Predictor
Load

update

Pr
ed

ic
te

d
M

is
s

B
as

e
re

gi
st

er

O
ff

se
t

r5 4X X

Replace second load by ld²

L
oa

d
ta

rg
et

r0
r1
r2

r3

r30
r31

PC:ldq r8,8(r1)

Miss

r8

Load Squared Table (LST)

(LP)

Figure 4.6: Predicting and issuing load squared.

store, even dynamically (it can only disambiguate the first load and the store), and
must conservatively assume a WAR dependence. We solve this issue by enforcing
the following restriction: a store following a load squared cannot be presented to
the memory hierarchy before the load squared completes. Since stores are seldom
on the critical path, delaying them that way is not a significant performance issue.
Other solutions to this problem, which we will consider in future work, include ways
to let the compiler assert the store and preceding loads squared do not alias.

Detecting a dual miss. Replacing the second load by a load squared is only
worthwhile if both loads miss in all cache levels, otherwise the time spent accessing
the DRAM twice may be higher than a full memory access plus a cache access in case
of one hit and one miss (let alone two cache accesses in case of two hits). Therefore,
we complement the load squared approach with a predictor for detecting when two
dependent loads are likely to miss; the second load is replaced by a load squared only
in this case.

Optimization when the first load is a miss. A load squared request is sent
to memory via the existing memory hierarchy. Therefore, it only makes sense to
check on the fly whether address a misses or hits the different caches. If the address
hits any cache level, value b is read and sent to the memory-side logic, which directly
computes c and fetches the corresponding value. This can be seen as an on-the-fly
change of opcode, from that of a load squared instruction with arguments a and d
to that of a “load squared with hit” instruction with arguments b and d.

4.3 PRINCIPLES 73

PC X X
saturating counter

Two bits

Hit/Miss

Pattern History

Table (PHT)

(a) ONELEV

Load History

Table (PHT)

saturating counter
Two bits

Hit/Miss

0110110............011

X X
PC

Table(LHT)
Pattern History

(b) TWOLEV

GLHR

Table (PHT)

Hit/Miss

X X

PC

Pattern History

0110110............011

saturating counter
Two bits

(c) GSHARE

Figure 4.7: Load predictors.

4.3.1 Detecting and issuing Load Squared

In addition to the memory-side logic, the mechanism relies on a table, the Load
Squared Table (LST), to dynamically identify chains of dependent loads, and on a
predictor to guess which Load/Load chains probably result in a double miss. Note
that because the Alpha instruction set provides a load instruction with offset, we
consider only pairs of directly dependent loads.

The LST is shown in Figure 4.6, and its operation is illustrated with instructions
ldq r1,0(r5) and ldq r8,8(r1). The LST keeps track of “producer” loads:

74 LOAD SQUARED: ADDING LOGIC CLOSE TO MEMORY TO REDUCE THE
LATENCY OF INDIRECT LOADS WITH HIGH MISS RATIOS 4.3

when a register is the target of a load (r1 after the first load), it is marked as
such in the LST. The base register of the load, and the value of its offset, are also
recorded in the second and third column of the LST, respectively. When a candidate
“consumer” load is decoded, the entry in the LST corresponding to its base register
is read. If the base register is marked as the target of a load, then a Load/Load chain
is detected. Of course, any intervening instruction (other than a load) that modifies
a load target register causes the load target bit of the LST to be cleared. Note also
that this mechanism spots Load/Load chains in distinct, and possibly distant, basic
blocks.

Detecting Load/Load chains is the first condition for replacement by a load
squared; the second is to predict a double miss with high probability. Each time a
load instruction is decoded, it is predicted as a hit or a miss (see predictor below),
and the predicted miss bit of the LST entry is updated accordingly. This way, when
the second load is decoded (ldq r8,8(r1) in the example), the hit/miss prediction
for the producing load is available. Separately, the consumer load is itself predicted
as a hit or a miss; if it is predicted missing, and it is fed by a load, and that load
was also predicted missing, then the second load is replaced by a load squared. The
base address (a in Figure 4.5) of the load squared is computed from the second and
third columns of the LST. The offset of the load squared is that of the second load.
For instance, ldq r8,8(r1) is replaced by a load squared whose target register is
r8 and input operands are immediate 8 and the target address of the first load, i.e.,
4(r5).

The Load Predictor. We have found that it is possible to relatively accu-
rately predict whether pairs of dependent loads will miss in all cache levels before
the second load is issued, and we have come up with a hardware mechanism to
implement a prediction strategy. The strategy is similar to history-based branch
predictors [Smi81; Yeh91; McF93]: prediction is based on both the hit/miss behav-
ior of previous loads and on the target load address. We studied three types of load
predictors: the one-level load predictor (ONELEV), the two-level load predictor
(TWOLEV) and the gshare (GSHARE) load predictor, see Fig. 4.7. A predictor is
read when the load is decoded and updated when it is committed.

The one-level load predictor (ONELEV) shown in 4.7(a) consists in one table of
2-bit saturating counters, the Pattern History Table (PHT). The PHT is indexed
by the PC of the load. When the load misses, the counter is incremented, and
decremented otherwise. Therefore, the predictor predicts the load will miss if it
missed at least on the last two occurrences. The one-level load predictor behaves
particularly well with loops that access chained data structures not yet present in
cache (cold misses).

The two-level load predictor (TWOLEV) further exploits the historical behavior

4.4 EXPERIMENTAL FRAMEWORK 75

Fetch width 8

Issue / Decode / 8
Commit width

RUU size 128
(Inst. window- ROB)

LSQ size 32

ExeUnits 4 IALU, 1 IMULT,
4 FPALU, 1 FPMULT

Branch Combined,
4K entries bimodal,

and 2 level Gap predictor,
8K 2nd level entries,

14 history wide,
1K meta-table size

7 cycle BR resolution

L1 DCache 16kB, 4 ways, 1 cycle

L1 ICache 16kB, 1 way, 1 cycle

L2 Unified Cache 256kB, 4 ways, 6 cycles

Table 4.1: Baseline configuration of the processor.

of each load. It includes a Load History Table (LHT) that records the hit/miss
behavior history of each load, see Figure 4.7(b). The LHT is indexed by the PC of
each load, the corresponding history of the load indexes the PHT.

The gshare load predictor (GSHARE) exploits the correlation between several
previous loads by maintaining a global behavior history in the Global Load History
Register (GLHR). The GLHR is XORed with the PC to index the Pattern History
Table as shown in 4.7(c). We further study the performance of each predictor in
Section 4.5.

4.4 Experimental Framework

We simulated an 8-way superscalar processor using the SimpleScalar 3.0 Alpha
toolset [Bur96]; Table 4.1 shows our baseline simulation environment.

We modified the system bus to operate at 1/5 the processor frequency. Also, to
properly measure the effect of load squared, we subdivided the processor-to-memory
round-trip latency into: 60 cycles for the processor-to-memory-side logic latency, 10
cycles for the memory-side logic latency, 20 cycles for logic-to-memory latency, 80

76 LOAD SQUARED: ADDING LOGIC CLOSE TO MEMORY TO REDUCE THE
LATENCY OF INDIRECT LOADS WITH HIGH MISS RATIOS 4.5

cycles for a DRAM access, 20 cycles from the memory back to the memory-side logic,
and 60 cycles from the logic back to the processor. The TLBs in the memory-side
logic and in the CPU have 32 entries. The cost of a TLB miss in the memory-side
logic is 80 cycles, and 30 cycles for the CPU’s TLB (because a CPU TLB miss can
be serviced by the cache). We also assume a 60-cycle latency for direct transfer from
the memory to the processor, so that a traditional read to memory (without TLB
miss) has a total latency of 240 cycles.

The latency of a load squared depends on whether address a’ was a cache
hit (Steps 2 or 2b of Fig. 4.5), and on whether address c’ is a hit (at Step 6b).
Assuming the memory-side TLB hits, the latency can therefore be one of the fol-
lowing: 60+10+60 = 130 cycles (two hits), 60+10+20+80+60 = 230 (a’ hits),
60+10+20+80+20+60 = 250 (c’ hits) and 60+10+20+80+20+20+80+60 = 350
(no hits). As said earlier, any miss in the memory-side TLB adds 80 cycles.

Predictor configuration. We used a Pattern History Table (PHT) of 4K entries for the
ONELEV load predictor, a 4K-entry Load History Table (LHT) for the TWOLEV
load predictor. The PHT for both the TWOLEV and the GSHARE load predictors
are indexed using a 14-bit history length (XORed with the PC for the GSHARE
predictor)

Benchmarks. We simulated all SpecInt and SpecFP benchmarks [Hen00] as well as
9 of the Olden [Rog95] benchmark suite. We simulated 100 Million instructions for
each benchmark, and we fast-forwarded 2 billion instructions for the SpecInt and
the SpecFP benchmarks.

4.5 Performance Evaluation

4.5.1 Load Squared potential

Figure 4.8 shows the percentage of loads that are directly dependent on other loads
(Load/Load). On average, 12.5% and up to 47% (ammp) of all executed loads are
directly dependent on another load. The Miss/Miss columns of Figure 4.8 show the
percentage loads that are fed by another load, and such that both miss at all cache
levels. Those Miss/Miss loads are those that should be replaced by loads squared.
While the percentage of Miss/Miss occurrences is relatively low, their effect on the
performance is significant because of the high latency of memory accesses.

Note also that we did not observe significant differences in TLB miss ratios with
and without loads squared.

4.5 PERFORMANCE EVALUATION 77

0

5

10

15

20

25

30

35

m
cf
tw

olf

pa
rs

er vp
r
gz

ip gc
c
cr

af
ty

eo
n

pe
rlb

m
k
ga

p

vo
rte

x
bz

ip2

wup
wise

sw
im
m

gr
id
ap

plu
m

es
a

ga
lge

l
ar

t

eq
ua

ke

fa
ce

re
c

am
m

p
luc

as

fm
a3

d

six
tra

ck
ap

si

bis
or

t
bh
em

3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tspAVG

Load/Load

Miss/Miss

47% 41%

P
er

ce
n

ta
g

e
o

f
L

o
ad

s

Figure 4.8: Potential loads squared and Miss/Miss occurrences.

4.5.2 Efficiency of load predictors

Because the load squared mechanism targets pairs of loads that both miss in the
cache hierarchy, replacing a load by a load squared when one of the two loads (or
both) hits may negatively affect performance.

On the other hand, failing to catch appropriate Miss/Miss pairs naturally means
achieving only a fraction of the potential performance improvement. Therefore,
the load squared mechanism is fairly sensitive to the efficiency of the load miss
prediction. Figure 4.9 shows the load prediction rates of the three types of predictors
discussed in Section 4.3.1, i.e., how often a dynamic instance of a load is correctly
predicted as hitting or missing (the average load prediction rate is 87%). We notice
that the TWOLEV and the ONELEV load predictors exhibit a better prediction
behavior than GSHARE for many benchmarks. The relative low prediction rate of
the GSHARE load predictor suggests that loads behavior have little correlation.

Interestingly, control speculation has a strong impact on the load prediction
rates. While Figure 4.9 gives the rate for all loads, Figure 4.10 only considers non-
speculated loads, or loads that were on a correctly predicted path. (Both figures
are on the same scale.) Clearly, the accuracy of our Miss/Miss predictors is then
much better, which indicates a possible correlation between branch prediction and
Miss/Miss prediction. How to leverage this observation to improve our Miss/Miss
predictors is left for future work.

Figure 4.11 shows the percentage of loads replaced by loads squared, for each
predictor. This figure should be compared with Figure 4.8. Miss/Miss sequences
are numerous in ammp, mcf and health; a few occurrences also occur in twolf
and em3d.

78 LOAD SQUARED: ADDING LOGIC CLOSE TO MEMORY TO REDUCE THE
LATENCY OF INDIRECT LOADS WITH HIGH MISS RATIOS 4.5

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

m
cf
tw

olf

pa
rs

er vp
r
gz

ip gc
c
cr

af
ty

eo
n

pe
rlb

m
k
ga

p

vo
rte

x
bz

ip2

wup
wise

sw
im
m

gr
id
ap

plu
m

es
a

ga
lge

l
ar

t

eq
ua

ke

fa
ce

re
c

am
m

p
luc

as

fm
a3

d

six
tra

ck
ap

si

bis
or

t
bh
em

3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tspAVG

L
o

ad
 P

re
d

ic
ti

o
n

 R
at

e

ONELEV

TWOLEV

GSHARE

Figure 4.9: Load prediction rate.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

m
cf
tw

olf

pa
rs

er vp
r
gz

ip gc
c
cr

af
ty

eo
n

pe
rlb

m
k
ga

p

vo
rte

x
bz

ip2

wup
wise

sw
im
m

gr
id
ap

plu
m

es
a

ga
lge

l
ar

t

eq
ua

ke

fa
ce

re
c

am
m

p
luc

as

fm
a3

d

six
tra

ck
ap

si

bis
or

t
bh
em

3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tspAVG

L
o

ad
 P

re
d

ic
ti

o
n

 R
at

e

ONELEV

TWOLEV

GSHARE

Figure 4.10: Non-speculative load prediction rate.

4.5 PERFORMANCE EVALUATION 79

0

1

2

3

4

5

6

7

8

9

10

m
cf
tw

olf

pa
rs

er vp
r
gz

ip gc
c
cr

af
ty

eo
n

pe
rlb

m
k
ga

p

vo
rte

x
bz

ip2

wup
wise

sw
im
m

gr
id
ap

plu
m

es
a

ga
lge

l
ar

t

eq
ua

ke

fa
ce

re
c

am
m

p
luc

as

fm
a3

d

six
tra

ck
ap

si

bis
or

t
bh
em

3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tspAVG

P
er

ce
n

ta
g

e
o

f
L

o
ad

s

ONELEV
TWOLEV
GSHARE

30

Figure 4.11: Percentage of load squared.

4.5.3 Performance results

Figure 4.12 shows the speedups achieved with the load squared mechanism. Our ap-
proach significantly improves the performance of several benchmarks (5% for twolf,
more than 7% for em3d and about 50% for ammp). Importantly, performance is never
degraded.

We also notice that the speed-up for mcf is smaller than we could have hoped
for from looking at Figure 4.11. Comparing Fig. 4.8 with Fig. 4.11, a possible ex-
planation is that our predictors may be too aggressive on this benchmark. However,
a deeper investigation shows that the root cause may be more complex. Consider
Table 4.2, where each row provides data for a specific static load in the main loop
of procedure refresh potential, which accounts of 35% of the total execution
time. The loads considered here are the most frequent loads that are fed at least
once by another load (control flow may imply that not all dynamic instances of a
load are fed by the same instruction). Note that there are four back-to-back loads
at addresses 7980 to 798c. Column 1 gives the PC of each load, and Column 2 their
dynamic counts. Column 3 says how many instances were fed by a load. Columns
4 and 5 indicate how many instances missed all cache levels, and how many both
missed and were fed by a load that missed, respectively. Clearly, Column 5 shows
our sweet spot. Column 6 gives the average latency, in cycles, elapsed between
the issuing of the producer load and the write-back of the current load, when load
squared is turned off. When it is turned on, Column 7 indicates how many instances
were converted to loads squared using the ONELEV predictor, and Column 8 gives
the resulting average latency, in cycles, of the load squared.

Table 4.2 first confirms that caches do their work well on these loads: most

80 LOAD SQUARED: ADDING LOGIC CLOSE TO MEMORY TO REDUCE THE
LATENCY OF INDIRECT LOADS WITH HIGH MISS RATIOS 4.6

1

1.02

1.04

1.06

1.08

1.1

m
cf
tw

olf

pa
rs

er vp
r
gz

ip gc
c
cr

af
ty

eo
n

pe
rlb

m
k
ga

p

vo
rte

x
bz

ip2

wup
wise

sw
im
m

gr
id
ap

plu
m

es
a

ga
lge

l
ar

t

eq
ua

ke

fa
ce

re
c

am
m

p
luc

as

fm
a3

d

six
tra

ck
ap

si

bis
or

t
bh
em

3d

he
alt

h
m

st

pe
rim

et
er

po
wer

tre
ea

dd tspAVG

S
p

ee
d

u
p

ONELEV

TWOLEV

GSHARE

1.50

Figure 4.12: Speedup obtained with the load squared mechanism.

PC Occur. Fed by Miss Both loads Avg Lat LD2 Avg Lat
count a LD count missed (w/o LD2) Count (w/ LD2)

0x120007974 2626041 740306 314269 62 553.163 0 549.284
0x120007980 2614229 734581 2231030 4830 555.701 51 554.132
0x120007984 2610730 733853 1418065 769 551.326 16 548.146
0x120007988 2598325 2595990 2597224 2154484 517.025 2467031 371.110
0x12000798c 2597455 2589596 48916 392 283.307 0 262.348
0x1200079c0 2621919 743407 567721 1350 551.763 24 550.839

Table 4.2: Stats for 181.mcf.

Load/Load’s are not Miss/Miss. The ONELEV predictor sees this correctly and,
where double misses are rare, it seldom converts the 2nd load into a load squared.
This is not true, however, for the load at address ending in 7988: most of its instances
miss and are fed by a load that also misses. Also, most of them are converted into
loads squared – again, a bit too many. Nevertheless, the result on the latency of
this specific load is dramatic.

4.6 Perspectives: Explicitly Migrating Memory Computations Closer
to Memory.

We have shown that it is possible to tackle the long latency of even very irregular
indirect memory accesses using a simple memory-side logic, and processor-based
hardware add-ons. Still, a lot of potential resides in migrating larger parts of the
application closer to memory or in the memory rather than address calculations.

4.6
PERSPECTIVES: EXPLICITLY MIGRATING MEMORY COMPUTATIONS CLOSER TO

MEMORY. 81

Execute processor (EP)

Instruction
Window

Instruction
Window

Functional Units
+

Register File

Functional Units
+

Register File

Memory hierarchy

Access processor (AP)

Figure 4.13: A decoupled architecture.

We conclude this chapter by presenting a more general decoupled architecture
associated with a language extension to C that allows the user to explicitly spec-
ify which part of the application to migrate to memory. This proposed decoupled
architecture speedups computations that involve irregular or non-contiguous data
structures. This work is still on-going, and only few microbenchmarks were studied.
We present an overview of existing decoupled architectures then our proposed ap-
proach. Further architectural details as well as some preliminary results are given
in Appendix A.

4.6.1 Decoupled architectures

The idea of decoupling computation instructions from memory access instructions
was initially proposed in order to parallelize the two producer/consumer processes
and hide memory communication delays. One of the first decoupled architectures
was proposed in [Smi82]. Smith proposed an operand Access/Execute decoupled
architecture via two separate scalar processors, each with its own instruction stream
(two distinct programs), and communicating via architectural queues as shown in
Figure 4.13. This architecture is more assimilated to an early two-instruction issue
constrained out of order processor [Smi84]. A similar pipelined architecture was also
presented in [Goo85].

The ZS-1 processor [Smi87] splits the instruction stream to two separate pipelines,
an X pipeline to execute floating point operations and an A pipeline to execute mem-
ory access operations as well as integer operations. Note that integer operations are

82 LOAD SQUARED: ADDING LOGIC CLOSE TO MEMORY TO REDUCE THE
LATENCY OF INDIRECT LOADS WITH HIGH MISS RATIOS 4.6

Access
Instructions

Computation
Instructions

L1 Cache

Cache Management
Instructions

Program Compiler

Registers

Access

Processor (CP)
Computation

L2 Cache and
Higher Level

Cache Management
Processor (CMP)

Processor (AP)

Figure 4.14: The HiDISC architecture.

treated like memory access operations because the ZS-1 was targeting scientific and
engineering applications. This decoupled architecture is somewhat similar to the Al-
pha 21264 architecture [Kes99] where the memory/integer instructions are issued on
a different path than the floating point instructions. The WM architecture [Wul92]
proposed a similar decoupled machine using FIFO communicating buffers and 3-
operand instructions.

Jones et al. showed in [Jon97] that the principal advantage of decoupled archi-
tecture is that a decoupled machine allows to have an effective instruction window
size greater than the sum of the individual windows sizes of each of the Access
processor (AP) and Execute Processor (EP): because the access instructions slip
ahead of the execution instruction, they feed the execution with the data it needs
on time, so that the processor behaves as if it has a larger instruction windows where
older instructions are the execution instructions. The potential of decoupling as well
as its effectiveness are further studied in [Bir93] and [Zha98]. Furthermore, a de-
coupled SMT architecture was proposed in [Par01] to improve the memory latency
tolerance of simultaneous multithreading. A partitioning compiler that automates
Access/Execution separation was proposed in [Ric01].

HiDISC [Ro03] is one of the few decoupled architectures that targets pointer and
data intensive applications. In addition to the access (AP) and computation (CP)
processors, HiDISC proposes a cache management processor (CMP) at the L1 cache
level to keep the cache supplied with data which will be used by the AP. Figure 4.14
shows the HiDISC architecture. Also, HiDISC proposes a compiler that performs
program slicing to separate computation, access and prefetch instruction streams.

4.6
PERSPECTIVES: EXPLICITLY MIGRATING MEMORY COMPUTATIONS CLOSER TO

MEMORY. 83

Finally Roth et al. proposed in [Rot00] to decouple accesses that are likely to
miss in the cache. This access stream is executed as a speculative thread. But this
thread also suffers from the same high memory latencies of the initial thread.

To summarize, the reviewed decoupled architectures allow memory accesses to
slip ahead of the execution to continuously supply it with data. However, decoupled
approaches suffer from three major disadvantages: because they still operate at the
processor level they suffer from the same latency problems of traditional approaches.
Also, these architectures can do little with chained data structures, especially when
the work to overlap is small. Finally, recent out-of-order superscalar architectures
having large instruction windows virtually decouple access from execution, so explic-
itly decoupling access from execution becomes useless unless access instructions can
provide data faster than superscalar processors. These issues are further explored
in the Data Structures Conscious Machine (DSCM).

4.6.2 The Data Structures Conscious Machine (DSCM)

The proposed decoupled architectures require considerable compiler effort or com-
plex architectural mechanisms to properly separate access code from execute code.
Particularly, the proposed mechanisms sometimes fail to improve the performance
of codes that involve complex data structures traversals. Furthermore, many of
those proposed decoupled architectures execute the memory access instructions in
the processor, and does not propose to migrate these instructions closer to memory
in order to benefit from lower latency memory accesses.

Also, migrating part of the application to an intelligent memory requires that
either the memory processor executes as fast as the main processor, or that care
should be taken that the appropriate part of the application be migrated to mem-
ory. For example, consider the procedure Traverse that traverses a linked-list
in Figure 4.15(a), if the process procedure has a lot of floating-point compu-
tations for example, migrating the whole function to the memory may worsen the
performance if the processor in the memory is not as fast as the main processor.
Besides, existing Linked Data Structures (LDS) prefetching schemes and decoupled
architectures can do well in such cases because the amount of work between two
consecutive memory accesses is high.

More generally, we notice that a lot of semantic is lost when programs are com-
piled and executed on processors: consider for example the simple case where a user
wants to perform an operation on a list of elements. Assume that the user decides
to implement a linked list to do this, so he writes a procedure similar to the one
shown in Figure 4.15(a). Then the compiler compiles this code into a sequence of
instructions that access the memory to load the nodes of the linked list and process
them. At this point, semantic was lost twice, the first time when the user decided

84 LOAD SQUARED: ADDING LOGIC CLOSE TO MEMORY TO REDUCE THE
LATENCY OF INDIRECT LOADS WITH HIGH MISS RATIOS 4.6

Traverse(Node* List)
{

for(Node* tmp=List; tmp;
tmp=tmp->next)

{
process(tmp);

}
}

→

Traverse(Node* List)

fetch:

{
/* fetch thread executed

at the DP*/
for(Node* tmp=List; tmp;

tmp=tmp->next)
fetch(*tmp);

}

execute:

{
/*Compute side (EP)*/
Node Nd;
while(read(Nd))

process(Nd);
}

(a) (b)

Figure 4.15: List traversal in DSCM: (a) C (b) Decoupled C.

to implement its list as a linked list while the nodes might be processed in parallel,
the second time, when the compiler compiled a sequential sequence of instructions
that traverse the linked list (while nodes could be processed in parallel). On the
other hand, a lot of effort is done to restore this semantic, so the compiler does some
transformations to parallelize this loop (by unrolling it for example). Then micro-
architectural optimizations can be introduced to further dig up this semantic, such
as prefetching to dissociate memory accesses from data processing. The architecture
also pipelines the execution, uses branch prediction to maximize the throughput of
execution, and uses register renaming to break false data dependencies that where
introduced by the compiler. In other words, a lot of effort is done to restore the
semantic that was lost when the algorithm was programmed, while the user could
sometimes easily transmit this semantic to the architecture, provided he had the
appropriate language extensions to do so.

In the approach we propose we want to

• Present language extensions that allows the user to explicitly pass semantic
information on memory accesses to the architecture.

• Design a decoupled architecture that exploits the language extensions as well
as intelligent memory approaches (low latency and high bandwidth).

The basic idea is to explicitly separate code for accessing data structures and
code for processing them in separate threads that communicate between each other.

Figure 4.15(a) shows a traversal of a linked list in which some processing is done
for each node (procedure process). And Figure 4.15(b) shows an implementation

4.6
PERSPECTIVES: EXPLICITLY MIGRATING MEMORY COMPUTATIONS CLOSER TO

MEMORY. 85

Preorder(TreeNode* T)
{

if(T){
process(*T);
Preorder(T->left);
Preorder(T->right);

}
}

Data Processor (DP)

Execute Processor (EP)

process(Nd)
→

Preorder(TreeNode* T)
fetch:
{

if(fetch(*T)){
Preorder(T->left);
Preorder(T->right);

}
}
execute:
{
TreeNode Nd;
if(read(Nd)){

process(Nd);
Preorder();
Preorder();

}
}

(a) (b)

Figure 4.16: Tree traversal in DSCM.

86 LOAD SQUARED: ADDING LOGIC CLOSE TO MEMORY TO REDUCE THE
LATENCY OF INDIRECT LOADS WITH HIGH MISS RATIOS 4.6

of the same code using our language extension. In this example, the user defines
two separate threads, the fetch thread that fetches data and the execute thread
that processes these data. The two threads communicate with each other trough
the two functions fetch() and read(), this later function collects data fetched
by the fetch() function to process them. The main advantage of the explicit
separation of fetch and execute codes in a language is to allow the user to explicit
the parallelism between fetching and executing. The fetch thread may execute
in two different ways: either as a thread running on a simultaneous multithreaded
processor [Tul95], in a way similar to the miss/execute decoupled approach proposed
by Roth et al. [Rot00], or in an intelligent memory to benefit from a low latency
memory access. We discuss both architectures in Appendix A.

An important measure in decoupling memory access from execution is the amount
of work that is overlapped with a memory access, for example, the amount of com-
putations in the process function of Figure 4.15. If the fetch thread is executed
in an intelligent memory, and if the amount of computations is very low (for exam-
ple a simple addition), the user may decide to migrate the whole procedure in the
fetch thread (i.e., in the intelligent memory) to benefit from low latency accesses.
So the explicit decoupling of access/execute at the language level allows the user
to define an appropriate partitioning of the code according to the semantic and the
complexity of the data structures he uses.

Figure 4.16 shows an example of tree traversal using the proposed language
extension; an important benefit is the push aspect where nodes are pushed serially
to the execution for processing, rather than pulled on demand. That is, the processor
does not have to wait for each node to calculate the address of the next. Instead,
the memory supplies the processor with the data in a dataflow manner

The preliminary performance results shown in Appendix A showed that the Data
Structure Conscious Machine (DSCM) can achieve substantial performance for ap-
plications that have irregular accesses corresponding to complex data structures.
A speedup of up to 5X can be achieved on a simple list traversal. Furthermore,
this approach does not require a detailed understanding of complex processor ar-
chitectures. Future works involve further detailing the decoupled architecture and
validating this approach with a larger spectrum of benchmarks.

Chapter 5
Conclusions and Perspectives

5.1 Summary

The high clock rates and the poor wire scaling of upcoming processors, as well as
their increasing complexity, may lead to a lot of difficulties to scale performance with
upcoming integration technologies. In this thesis we explored several alternative
approaches to better exploit on-chip space and reduce the effect of the memory
wall, especially for non-numeric applications that have little or no ILP and involve
accesses to complex data structures.

In a first approach, we significantly improved the performance of code regions
with little or no ILP by dynamically extracting sequences of dependent instruc-
tions and collapsing them into Functions. We proposed an implementation of hard-
ware operators that map these functions, and we also implemented the approach
on a scaled-up superscalar processor with the rePLay framework. Furthermore, we
studied the potential performance of our approach in idealistic rePLay and cache
environments.

Because dependent loads are special forms of instruction dependencies, and be-
cause they cannot be collapsed in combinational functions, we explored a comple-
mentary approach that improves indirect loads having high miss ratios. The load
squared approach transforms loads that depend on other loads and have high miss
ratios into load squared instructions. The load squared operation migrates the ad-
dress calculation closer to memory, typically to the memory controller, to speedup
the address calculation process in chains of dependent loads. Our approach improved
the performance of codes that have linked data structures with high miss ratios.

Finally, we extended the notion of migrating address calculations closer to mem-
ory by migrating all or part of the application to an intelligent memory. The novel

87

88 CONCLUSIONS AND PERSPECTIVES 5.2

aspect of this decoupled architecture lies in the ability to explicitly specify what part
of the application should be migrated to the memory through a proposed language
extension to C.

5.2 Perspectives

This research opens several avenues for further exploration and future work.
In Chapter 3 we showed that integer applications have a great potential of in-

struction collapsing if we consider the dynamic execution of instructions. Still, the
implementation in a superscalar processor could not extract a lot of potentially
large sequences of dependent instructions. Further work should address the issue of
extracting those sequences of dependent instructions. Techniques such as iterative
compilation may improve significantly the performance of our approach.

With respect to the load squared approach presented in Chapter 4, further work
should be done in considering other patterns than the load-add-load patterns
studied. Also, other improvements are possible in the load predictor we presented,
specifically by correlating it to the branch predictor.

Finally, The DSCM approach presented in the perspectives of Chapter 4 is still
an on-going work and needs to be further explored and analyzed. Because we hand-
coded the micro-benchmarks we studied, a compiler may allow larger benchmarks
to be implemented and studied to validate this approach.

More generally, the billion-transistor era will open the way to combine a lot of the
approaches and ideas we explored in this thesis. Also, The advent of new emerging
technologies such as nanotechnologies [Gol01], and non-volatile high performance
memories that can be embedded in the processor, like MRAMs [Des02], will probably
shift computer architecture research to more innovations in spacial computing and
also to new challenges such as fault-tolerant architectures and new computing models
and languages.

Appendix A
The DSCM Architecture

In this part of the thesis, we discuss a proposal for a DSCM architecture. As stated in
Section 4.6.2, we implemented two different architectures: the first one is physically
decoupled and the access threads are executed in an intelligent memory, and the
other is the single-processor DSCM architecture, in which all access and execute
threads are executed in the main processor.

A.1 The DSCM using intelligent memory

The architecture we propose is a decoupled architecture and consists of two separate
processors; the Execution Processor (EP) is the main processor, and the Data Pro-
cessor (DP) is physically located in the DRAM like IRAM [Pat97] to benefit from
lower latency and higher bandwidth. In this first study, we assumed both processors
are 4-way superscalar. The EP executes the main program thread and dispatches
access threads to the DP (through the added instruction ldth and ldth). The
DP is 2-threaded to support executing both fetch and store threads. Figure A.1
shows the DSCM decoupled architecture.

The EP and the DP communicate with each other using FIFO Buffers. Data are
read from memory and are sent to the D-buffers. The read() function shown in
Figure A.4(b) reads data from the D-buffer instead of normal registers. On the DP
side, the M-buffers are used to store data from the EP (using the store function,
see the example of Figure A.5) to the DP (using the read function in the store
thread). In this study, we assume that the memory consistency is handled by the
user, that is we suppose that the user does not write to cache hierarchy at the
addresses accessed through the D-buffers, or vice-versa.

89

90 THE DSCM ARCHITECTURE A.2

....

Execute Thread

Main Memory

Data Processor(DP)

L1

L2

....

D0 D1 Dn

D−Buffers

Proc.
Store Thread

Fetch Thread

M0 M1 Mn

D−Buffers

Execute Processor(EP)

Figure A.1: The DSCM architecture.

A.2 THE DSCM USING INTELLIGENT MEMORY 91

L2

Fetch Thread

(EP+DP)

Main Memory

L1

Store Thread

Execute Thread

D−Buffers

M−Buffers

Figure A.2: A single-processor DSCM architecture.

92 THE DSCM ARCHITECTURE A.3

A.2 The single-processor DSCM architecture

Our mechanism can also be implemented on a single SMT processor where all ex-
ecute, fetch and store threads are executed on a single processor as shown in Fig-
ure A.2. The fetch thread supplies the execute thread with data, so it can slip ahead
of the execution. The idea is also similar to the SMT architecture presented by Roth
et al. [Rot01], but the prefetch is not speculative. Like the intelligent-memory DSCM
architecture, threads communicate with each other using FIFO buffers as shown in
Figure A.2.

A.3 DSCM instruction set extension

We extended the Alpha instruction set to allow buffer communication between the
Execution Processor (EP) and the Data Processor (DP). Figure A.4(c) shows the
corresponding assembly code of the list traversal of Figure A.4(b). We summarize
the DSCM instruction set extension in Figure A.3, the ISA extension defines four
different types of instructions.

Load/Store buffer instructions. ldBm and stBm load or store data from or in memory
at the address pointer stored in the register operand. To allow efficient streaming
instructions and also to handle complex data structures (C struct for example), a
9-bit immediate operand specifies the size of the data to load or store. For example,
in Figure A.4(c), the instruction ldBm DO,(r16),16 is executed in the DP and
corresponds to the fetch command in Figure A.4(b). This instruction loads 16
bytes (the whole node of the list) from the memory at the address pointed to by
r16 and sends the data to the buffer D0 in the EP. Similarly, the stBm reads data
from the M-buffers of the DP (or the store thread if a single processor is used) and
stores them in the address specified by the register operand instruction.

In addition to normal data, the DP can send a special EOD (End Of Data) token
to the processor. Such tokens are used to end data traversal loops in a dataflow man-
ner. The two special instructions ldEOD and stEOD are used to push special EOD
(End Of Data) tokens in the buffers of the processor and the memory respectively.
For example the ldEOD D0 in the fetch thread of Figure A.4(c) sends an EOD at
the end of the list traversal loop, a special branch instruction in the EP ends the
loop in the execute thread.

DSCM branch instructions. The two instructions bod (branch on data) and boed
(branch on end of data) are used to implement dataflow based loops like the while
loop of the execute thread of Figure A.4(b). In this example the bod D0,L5

A.3 DSCM INSTRUCTION SET EXTENSION 93

1. D-Buffer transfer instruction format
=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
comment: Similar to immediate operate instruction format

Memory /processor communication instructions
31 26 25 21 20 12 11 5 4 0

--
| OPCODE (6) | Buffer (5)| Size (9) | Function(7)| @ reg(5)|
--
opcode.function

02.01 LD THREAD ldBm Di,ri,size Load from mem "size" bytes addressed
at ri in buffer Di

02.02 LD THREAD ldEOD Di Send and "End Of Data" to buffer Di of processor

02.11 ST THREAD stBm Mi,ri,size Store in mem "size" bytes addressed
at ri from buffer Mi

02.12 EX THREAD stEOD Mi Send an "End Of Data" to buffer Mi of memory
=*=*=*=*=*=*=*=

Thread instruction format
=*=*=*=*=*=*=*=*=*=*=*=*=
comment : Similar to Alpha Branch instruction

Manage memory threads on processors
31 26 25 21 20 0

--
| OPCODE (6) | Function(5)| Branch displacement (mem thread code) |
--
opcode.function

03.01 EX THREAD ldth label Fork a "load thread"
03.02 LD THREAD ldthe End of a "load thread"
03.11 EX THREAD stth label Fork a "store thread"
03.12 ST THREAD stthe End of a "store thread"

=*=*=*=*=*=*=*=
Branch instructions
=*=*=*=*=*=*=*=*=*=
comment : use branch instruction format
31 26 25 21 20 0

--
| OPCODE (6) | Buffer (5)| |
--
opcode

06 EX/ST THREAD boed [D|M]i Branch on End of data
07 EX/ST THREAD bod [D|M]i Branch on data

=*=*=*=*=*=*=*=
Buffer Operate instructions
=*=*=*=*=*=*=*=*=*=*=*=*=*=*
comments: * ALPHA operate instructions having OPCODE 10 and 11 respectively are mapped

to opcode 04 and 05, the first destination is a data buffer
* For each instruction of function x, function x+1 is added for the same instruction

but the data are not removed from the buffer.
ex : 10.20 addq r0,r2,r3 ==>

EX THREAD 04.20 dpaddq D0,r2,r3 //pointer point to next data
04.21 daddq D0,r2,r3 //pointer unchanged

EX THREAD 04.23 addqD r1,r2,Mi Send to M-buffers of memory

Floating point operate format
=*=*=*=*=*=*=*=*=*=*=*=*=*=*=

14.028 EX THREAD Dtoft Di,fc move from buffer to FP reg (T FP)
14.008 EX THREAD Dtofs Di,fc move from buffer to FP reg (S FP)
1C.80 EX THREAD ftoDt fi,Mi move from FP reg to buffer in mem
1C.88 EX THREAD ftoDs fi,Mi move from FP reg to buffer in mem

Figure A.3: ALPHA instruction set extension for the DSCM architecture.

94 THE DSCM ARCHITECTURE A.3

Traverse(Node* List)
{

for(Node* tmp=List; tmp;
tmp=tmp->next)

{
process(tmp);

}
}

→

Traverse(Node* List)

fetch:

{
/* fetch thread executed

at the DP*/
for(Node* tmp=List; tmp;

tmp=tmp->next)
fetch(*tmp);

}

execute:

{
/*Compute side (EP)*/
Node Nd;
while(read(Nd))

process(Nd);
}

→

Traverse:
;init

....

.....
;fetch thread

Traverse fetch:
...
; r16 : @ of 1st Node

beq r16,L2
L1: ; Load node from memory

; and send it to D-buffer
; of EP (D0)

ldbm D0,(r16),16
; tmp=tmp->next

ldq r16,8(r16)
; while(tmp)

bne r16,L1
; send EOD to EP

L2: ldEOD D0
; end of fetch thread

ldthe

; main execute thread
Traverse execute:

; initiate fetch thread
; in memory

ldth Traverse fetch
L5: ; while(read(Nd))

boed D0, L4
; process: accumulate
; Node data

dpaddq D0,r1,r1
; Ignore Nd->next (r31
; always zero)

dpaddq D0,r31,r31
....
....
; while(read(Nd))

bod D0,L5
....
....
ret (r26)

(a) (b) (c)

Figure A.4: List traversal:(a) C (b) Decoupled C (c) Assembly code.

A.4 METHODOLOGY AND EXPERIMENTAL RESULTS 95

instruction branches to the beginning of the while loop until an EOD is sent in
the D0 buffer. On the other hand, the boed instruction branches when an EOD is
read in the D-buffer.

D-Operate instructions. D-operate instructions are instructions that directly operate
on data in the D-buffers or push results in the M-buffers. Again, in the example
of Figure A.4, assuming that the process() function sums the data in the nodes
(S+=Nd->data), the instruction dpaddq D0,r1,r1 adds the data in the D-
buffer D0 to the register r1 and removes the data from the buffer.

Thread instructions. The ldth and stth initiate respectively load and store threads
in the DP, while ldthe and stthe terminate them. In Figure A.4(c) the ldth
Traverse fetch instruction signals the fetch thread to execute the thread located
at address Traverse fetch. The ldthe instruction in the fetch thread terminates
the thread.

A.4 Methodology and Experimental Results

We modified the out-of-order processor simulator (sim-outorder) of the Sim-
pleScalar toolset [Bur96] to allow multithreaded processing and we added a processor
at the memory level to evaluate the DSCM architecture. The simulator operates in
two modes, the DSCM onchip mode, which simulates the single-processor DSCM
architecture, and the DSCM IRAM mode which simulates the intelligent-memory
architecture. Both the EP and DP are four-way superscalar processors with 96-
instruction windows in each. The EP is multithreaded in the DSCM onchip, the
DP also is multithreaded to allow execution of both fetch and store threads. We
used a 16K 4 way L1 cache with 1-cycle latency, and a 256K 4 way L2 cache with
6-cycle latency. The processor (EP) to memory latency is fixed to 200 cycles.

DP configuration. As suggested in [Pat97], the processor to memory latency when
the processor is physically located in the DRAM logic may be from 5X to 10X lower.
Therefore, we evaluated the performance assuming EP to memory latency 20 cycles
(lat20) and 40 cycles (lat40). Also, because the DRAM logic is slower than the
EP logic, we evaluated the performance assuming no slowdown (sd1) and a 2X
factor slowdown (sd2).

Evaluated microbenchs. We hand-coded the list-traversal example shown in Fig-
ure A.4 as well as the matrix multiplication loop shown in Figure A.5. This later
example illustrates the use of a third thread, the store thread which is responsible

96 THE DSCM ARCHITECTURE A.4

MatMul(double A[][N],double B[][N],
double C[][N])

{
for(int i=0;i<N;i++)

for(int j=0;j<N;j++){
double S=0.0;
for(k=0;k<N;k++)

S+=traversal A[i,k]* traversal B[k,j];
C[i,j]=S;

}
}

→

MatMul(double A[][N],double B[][N],
double C[][N])

fetch:
{

int i ,j ;
for(i=0;i<N;i++)

for(j=0;j<N;j++)
for(k=0;k<N;k++){

fetch(A[i][k]);
fetch(B[k][j]);}

}
execute:
{
int i,j,k;
for(i=0;i<N;i++)
for(j=0;j<N;j++){
S=0;
for(k=0;k<N;k++){
read(v1); read(v2);
S+=v1*v2; }
store(S);

}
}
store:
{
int i,j;
double S;
for(i=0;i<N;i++)
for(j=0;j<N;j++){
read(S);
C[i][j] = S;

}
}

(a) (b)

Figure A.5: Matrix multiplication in Decoupled C.

A.4 METHODOLOGY AND EXPERIMENTAL RESULTS 97

List Traversal

0

1

2

3

4

5

6

0 10 50 100 250 500 750 1000

Work

S
p

ee
d

u
p

DSCM onchip

DSCM IRAM sd1lat20

DSCM IRAM sd2lat20

DSCM IRAM sd1lat40

DSCM IRAM sd2lat40

Figure A.6: List traversal speedup for different value of overlapped work (W).

MatMul

0

0.5

1

1.5

2

2.5

3

3.5

10 50 100 250 500 750 1000

N

S
p

ee
d

u
p

DSCM onchip

DSCM IRAM sd1lat20

DSCM IRAM sd2lat20

DSCM IRAM sd1lat40

DSCM IRAM sd2lat40

Figure A.7: Matrix multiplication speedup for different sizes (N).

98 THE DSCM ARCHITECTURE A.4

for storing results in memory through the store() function. This thread allows
the user to explicit more parallelism by streaming results back to the memory.

To study the effect of overlapping memory accesses with calculation, we replaced
the process function in the list traversal example of Figure A.4 with a dummy loop
that sums the values from 1 to W, where W is the amount of work to overlap. We
evaluated the matrix multiplication loop for matrices of different sizes. Figure A.6
shows the speedup achieved on the list traversal for different values of overlapping
work (W). The column onchip shows the speedups we obtain when all the threads
are executed on the EP (no DP). The speedup results show that we can achieve
substantial speedups (more than 5X) when the amount of work to overlap is small.
Figure A.7 shows the speedup achieved on a matrix multiplication kernel, we notice a
slow down for small matrices because the communication between the data processor
and the execution Processor is longer than cache accesses. However for large matrices
that miss in the cache, more than a 2X speedup can be acchieved

Still an effort is required from the user to explicit the partitioning between mem-
ory accesses and computations. However, unlike program optimizations, which re-
quire a detailed understanding of complex processor architectures, our approach only
requires that the user be aware of the data structures he uses. We are investigating
higher-level language extensions to render this task even more effortless.

Bibliography

[Aga00] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock
rate versus ipc: the end of the road for conventional microarchitectures.
In Proceedings of the 27th annual international symposium on Computer
architecture, pp. 248–259. ACM Press, 2000.

[alp98] Alpha architecture handbook, October 1998. Compaq Computer Corpo-
ration.

[AMD00] AMD. 3DNow! Technology Manual. Advanced Micro Devices, Inc, 2000.

[Ath93] P. M. Athanas and H. F. Silverman. Processor reconfiguration through
instruction-set metamorphosis. Computer, vol. 26(3):pp. 11–18, 1993.

[Bar99] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Maps: a compiler-
managed memory system for raw machines. In Proceedings of the 26th an-
nual international symposium on Computer architecture, pp. 4–15. IEEE
Computer Society, 1999.

[Bar01] R. Barua, W. Lee, S. Amarasinghe, and A. Agarawal. Compiler sup-
port for scalable and efficient memory systems. IEEE Trans Comput,
vol. 50(11):pp. 1234–1247, 2001.

[Bek99] M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rappoport,
A. Yoaz, and U. Weiser. Correlated load-address predictors. In Proceedings
of the 26th annual international symposium on Computer architecture, pp.
54–63. IEEE Computer Society, 1999.

[Bir93] P. L. Bird, A. Rawsthorne, and N. P. Topham. The effectiveness of de-
coupling. In Proceedings of the 7th international conference on Supercom-
puting, pp. 47–56. ACM Press, 1993.

99

100 BIBLIOGRAPHY

[Bur96] D. Burger, T. M. Austin, and S. Bennett. Evaluating future microproces-
sors: The SimpleScalar tool set. Tech. Rep. CS-TR-1996-1308, 1996.

[Bur04] D. Burger and J. R. Goodman. Billion-transistor architectures: There
and back again. Computer, vol. 37(3):pp. 22–28, 2004.

[Cal00] T. J. Callahan, J. R. Hauser, and J. Wawrzynek. The garp architecture
and c compiler. Computer, vol. 33(4):pp. 62–69, 2000.

[Car99] J. B. Carter, W. C. Hsieh, L. Stoller, M. R. Swanson, L. Zhang, E. Brun-
vand, A. Davis, C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and
T. Tateyama. Impulse: Building a smarter memory controller. In HPCA,
pp. 70–79. 1999.

[Car01] J. E. Carrillo and P. Chow. The effect of reconfigurable units in superscalar
processors. In Proceedings of the 2001 ACM/SIGDA ninth international
symposium on Field programmable gate arrays, pp. 141–150. ACM Press,
2001.

[Cho00] Y. Chou, P. Pillai, H. Schmit, and J. P. Shen. PipeRench implementation
of the instruction path coprocessor. In Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture, pp. 147–158.
ACM Press, 2000.

[Cla03] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration through au-
tomated instruction set customization. In Proceedings of the 36th annual
ACM/IEEE international symposium on Microarchitecture. 2003.

[Col02] J. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer cache as-
sisted prefetching. In Proceedings of the 35th annual ACM/IEEE in-
ternational symposium on Microarchitecture, pp. 62–73. IEEE Computer
Society Press, 2002.

[Com02] K. Compton and S. Hauck. Reconfigurable computing: a survey of systems
and software. ACM Computing Surveys (CSUR), vol. 34(2):pp. 171–210,
2002.

[Coo02] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless, content-directed
data prefetching mechanism. In Proceedings of the 10th international con-
ference on Architectural support for programming languages and operating
systems, pp. 279–290. ACM Press, 2002.

BIBLIOGRAPHY 101

[DeH94] A. DeHon. DPGA-coupled microprocessors: Commodity ICs for the early
21st century. In D. A. Buell and K. L. Pocek, editors, Proceedings of IEEE
Workshop on FPGAs for Custom Computing Machines, pp. 31–39. Napa,
CA, Apr 1994.

[DeH99] A. DeHon and J. Wawrzynek. Reconfigurable computing: what, why, and
implications for design automation. In Proceedings of the 36th ACM/IEEE
conference on Design automation conference, pp. 610–615. ACM Press,
1999.

[DeH00] A. DeHon. The density advantage of configurable computing. Computer,
vol. 33(4):pp. 41–49, 2000.

[Des02] R. Desikan, C. R. Lefurgy, S. W. Keckler, and D. Burger. On-chip MRAM
as a high-bandwidth, low-latency replacement for DRAM physical mem-
ories. Tech. Rep. TR-02-47, Department of Computer Sciences, The Uni-
versity of Texas at Austin, September 2002.

[Ebe96] C. Ebeling, D. C. Cronquist, and P. Franklin. RaPiD - reconfigurable
pipelined datapath. In Proceedings of the 6th International Workshop
on Field-Programmable Logic, Smart Applications, New Paradigms and
Compilers, pp. 126–135. Springer-Verlag, 1996.

[Ebe03] C. Ebeling. RaPiD-C manual. Tech. rep., Department of Computer Sci-
ence and Engineering, University of Washington, 2003.

[Fah01] B. Fahs, S. Bose, M. Crum, B. Slechta, F. Spadini, T. Tung, S. J. Pa-
tel, and S. S. Lumetta. Performance characterization of a hardware
framework for dynamic optimization. In Proceedings of the 34th annual
IEEE/ACM international symposium on Microarchitecture. ACM Press,
December 2001.

[Far98] A. Farcy, O. Temam, R. Espasa, and T. Juan. Dataflow analysis of branch
mispredictions and its application to early resolution of branch outcomes.
In Proceedings of the 31st annual ACM/IEEE international symposium
on Microarchitecture, pp. 59–68. IEEE Computer Society Press, 1998.

[Fis02] D. Fischer, J. Teich, M. Thies, and R. Weper. Efficient architec-
ture/compiler co-exploration for ASIPs. In Proceedings of the interna-
tional conference on Compilers, architecture, and synthesis for embedded
systems, pp. 27–34. ACM Press, 2002.

102 BIBLIOGRAPHY

[Fri98] D. H. Friendly, S. J. Patel, and Y. N. Patt. Putting the fill unit to work:
dynamic optimizations for trace cache microprocessors. In Proceedings of
the 31st annual ACM/IEEE international symposium on Microarchitec-
ture, pp. 173–181. IEEE Computer Society Press, 1998.

[Gol99] S. C. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. R. Taylor,
and R. Laufer. PipeRench: a coprocessor for streaming multimedia accel-
eration. In Published in proceedings of the 26th International Symposium
on Computer Architecture ISCA 99, pp. 28–39. Atlanta, GA, 1999.

[Gol00] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor.
PipeRench: A reconfigurable architecture and compiler. IEEE Computer,
vol. 33(4):pp. 70–77, April 2000.

[Gol01] S. C. Goldstein and M. Budiu. Nanofabrics: Spatial computing using
molecular electronics. In Proceedings of the 28th Annual International
Symposium on Computer Architecture. june 2001.

[Goo85] J. R. Goodman, J. tu Hsieh, K. Liou, A. R. Pleszkun, P. B. Schechter,
and H. C. Young. Pipe: a vlsi decoupled architecture. In Proceedings of
the 12th annual international symposium on Computer architecture, pp.
20–27. IEEE Computer Society Press, 1985.

[Gut01] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. MiBench: A free, commercially representative embedded
benchmark suite. In Proceedings of the IEEE 4th Annual Workshop on
Workload Characterization. December 2001.

[Hau97a] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao. The Chimaera reconfig-
urable functional unit. In K. L. Pocek and J. Arnold, editors, Proceedings
of the IEEE Symposium on FPGAs for Custom Computing Machines, pp.
87–96. IEEE Computer Society Press, 1997.

[Hau97b] J. R. Hauser and J. Wawrzynek. Garp: A MIPS processor with a recon-
figurable coprocessor. In Proceedings FCCM, pp. 24–33. April 1997.

[Hau98] S. Hauck. The roles of FPGAs in reprogrammable systems. Proceedings
of the IEEE, vol. 86(4):pp. 615–638, April 1998.

[Hau00] S. Hauck, M. Hosler, and T. Fry. High performance carry chains for FP-
GAs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 8(2), April 2000.

BIBLIOGRAPHY 103

[Hen00] J. Henning. Spec cpu2000: measuring cpu performance in the new mil-
lennium. IEEE Computer, vol. 33(7):pp. 28–35, 2000.

[Hin01] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and
P. Roussel. The microarchitecture of the Pentium 4 processor. Intel
Technology Journal, (Q1), 2001.

[Int] Intel Corp. Intel Itanium 2 Processor Reference Manual.

[Jac99] J. A. Jacob and P. Chow. Memory interfacing and instruction specification
for reconfigurable processors. In Proceedings of the 1999 ACM/SIGDA
seventh international symposium on Field programmable gate arrays, pp.
145–154. ACM Press, 1999.

[Jon97] G. P. Jones and N. P. Topham. A comparison of data prefetching on
an access decoupled and superscalar machine. In Proceedings of the 30th
annual ACM/IEEE international symposium on Microarchitecture, pp.
65–70. IEEE Computer Society, 1997.

[Jou89] N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for
superscalar and superpipelined machines. In Proceedings of the third inter-
national conference on Architectural support for programming languages
and operating systems, pp. 272–282. ACM Press, 1989.

[Kan99] Y. Kang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, and J. Torellas. Flexram:
Toward an advanced intelligent memory system. In Proceedings of the
1999 IEEE International Conference on Computer Design, p. 192. IEEE
Computer Society, 1999.

[Kar00] M. Karlsson, F. Dahlgren, and P. Stenstrom. A prefetching technique
for irregular accesses to linked data structures. In Proceedings of the The
Sixth International Symposium on High-Performance Computer Architec-
ture (HPCA’6), pp. 206–217. IEEE Computer Society, 2000.

[Kes99] R. E. Kessler. The alpha 21264 microprocessor. IEEE Micro, vol. 19(2):pp.
24–36, 1999.

[Koz02] C. Kozyrakis and D. Patterson. Vector vs. superscalar and vliw architec-
tures for embedded multimedia benchmarks. In Proceedings of the 35th
annual ACM/IEEE international symposium on Microarchitecture, pp.
283–293. IEEE Computer Society Press, 2002.

104 BIBLIOGRAPHY

[Lee98] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and
S. Amarasinghe. Space-time scheduling of instruction-level parallelism on
a raw machine. In Proceedings of the eighth international conference on
Architectural support for programming languages and operating systems,
pp. 46–57. ACM Press, 1998.

[Lip95] M. H. Lipasti, W. J. Schmidt, S. R. Kunkel, and R. R. Roediger. Spaid:
software prefetching in pointer- and call-intensive environments. In Pro-
ceedings of the 28th annual international symposium on Microarchitecture,
pp. 231–236. IEEE Computer Society Press, 1995.

[Luk96] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive
data structures. In Proceedings of the seventh international conference on
Architectural support for programming languages and operating systems,
pp. 222–233. ACM Press, 1996.

[Mah92] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann.
Effective compiler support for predicated execution using the hyperblock.
In Proceedings of the 25th annual international symposium on Microar-
chitecture, pp. 45–54. IEEE Computer Society Press, 1992.

[Mai00] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz.
Smart memories: a modular reconfigurable architecture. In Proceedings of
the 27th annual international symposium on Computer architecture, pp.
161–171. ACM Press, 2000.

[McF93] S. McFarling. Combining branch predictors. Technical Note TN-36, Dig-
ital WRL, june 1993.

[Mot99] Motorola, Inc. AltiVec Technology Programming Interface Manual. Mo-
torola, Inc, 1999.

[MS97] W. H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C. Ebel-
ing, R. Hartenstein, O. Mencer, J. Morris, K. Palem, V. K. Prasanna,
and H. A. E. Spaanenburg. Seeking solutions in configurable computing.
Computer, vol. 30(12):pp. 38–43, 1997.

[Nag01] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler. A design
space evaluation of grid processor architectures. In Proceedings of the
34th annual ACM/IEEE international symposium on Microarchitecture,
pp. 40–51. IEEE Computer Society, 2001.

BIBLIOGRAPHY 105

[Osk98] M. Oskin, F. T. Chong, and T. Sherwood. Active pages: a computation
model for intelligent memory. In Proceedings of the 25th annual interna-
tional symposium on Computer architecture, pp. 192–203. IEEE Computer
Society, 1998.

[Osk99] M. Oskin, J. Hensley, D. Keen, F. T. Chong, M. Farrens, and A. Chopra.
Exploiting ilp in page-based intelligent memory. In Proceedings of the
32nd annual ACM/IEEE international symposium on Microarchitecture,
pp. 208–218. IEEE Computer Society, 1999.

[Par01] J.-M. Parcerisa and A. Gonzalez. Improving latency tolerance of multi-
threading through decoupling. IEEE Trans Comput, vol. 50(10):pp. 1084–
1094, 2001.

[Pat90] D. A. Patterson and J. L. Hennessy. Computer architecture: a quantitative
approach. Morgan Kaufmann Publishers Inc., 1990.

[Pat97] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick. A case for intelligent ram.
IEEE Micro, vol. 17(2):pp. 34–44, 1997.

[Pat98] S. J. Patel, M. Evers, and Y. N. Patt. Improving trace cache effectiveness
with branch promotion and trace packing. In Proceedings of the 25th
annual international symposium on Computer architecture, pp. 262–271.
IEEE Press, 1998.

[Pat00] S. J. Patel, T. Tung, S. Bose, and M. M. Crum. Increasing the size of
atomic instruction blocks using control flow assertions. In Proceedings of
the 33rd annual IEEE/ACM international symposium on Microarchitec-
ture, pp. 303–313. ACM Press, 2000.

[Pat01] S. J. Patel and S. S. Lumetta. rePLay: A hardware framework for dynamic
optimization. IEEE Transactions on Computers, vol. 50(6), June 2001.

[Phi94] J. Phillips and S. Vassiliadis. High-performance 3-1 interlock collapsing
ALU’s. IEEE Transactions on Computers, vol. 43(3), March 1994.

[Ple86] A. R. Pleszkun and M. J. Thazhuthaveetil. An architecture for efficient
lisp list access. In Proceedings of the 13th annual international symposium
on Computer architecture, pp. 191–198. IEEE Computer Society Press,
1986.

[Raz] R. Razdan. PRISC: Programmable Reduced Instruction Set Computers.
Ph.d. thesis, Harvard University, Division of Applied Sciences.

106 BIBLIOGRAPHY

[Raz94] R. Razdan and M. D. Smith. A high-performance microarchitecture with
hardware-programmable functional units. In Proceedings of the 27th an-
nual international symposium on Microarchitecture, pp. 172–180. ACM
Press, 1994.

[Ric01] K. D. Rich and M. K. Farrens. Code partitioning in decoupled compilers.
Lecture Notes in Computer Science, vol. 1900, 2001.

[Ro03] W. W. Ro, J.-L. Gaudiot, S. P. Crago, and A. M. Despain. Hidisc: A de-
coupled architecture for data-intensive applications. In Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS’03),
p. 3.2. IEEE Computer Society, 2003.

[Rog95] A. Rogers, M. C. Carlisle, J. H. Reppy, and L. J. Hendren. Supporting
dynamic data structures on distributed-memory machines. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), vol. 17(2):pp.
233–263, 1995.

[Ros93] J. Rose, A. E. Gamal, and A. Sangiovanni-Vincentelli. Architecture of
field-programmable gate arrays. Proceedings of the IEEE, vol. 81(7):pp.
1013–1029, July 1993.

[Rot98] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetching for
linked data structures. In Proceedings of the eighth international confer-
ence on Architectural support for programming languages and operating
systems, pp. 115–126. ACM Press, 1998.

[Rot99] A. Roth and G. S. Sohi. Effective jump-pointer prefetching for linked data
structures. In Proceedings of the 26th annual international symposium on
Computer architecture, pp. 111–121. IEEE Computer Society, 1999.

[Rot00] A. Roth, C. B. Zilles, and G. S. Sohi. Micro-architectural miss/execute
decoupling. In MEDEA Workshop. october 2000.

[Rot01] A. Roth and G. S. Sohi. Speculative data-driven multithreading. In
Proceedings of the Seventh International Symposium on High-Performance
Computer Architecture (HPCA’01), p. 37. IEEE Computer Society, 2001.

[San03] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP with
the polymorphous TRIPS architecture. In Proceedings of the 30th annual
international symposium on Computer architecture, pp. 422–433. ACM
Press, 2003.

BIBLIOGRAPHY 107

[Saz96] Y. Sazeides, S. Vassiliadis, and J. E. Smith. The performance potential
of data dependence speculation & collapsing. In Proceedings of the 29th
annual IEEE/ACM international symposium on Microarchitecture, pp.
238–247. IEEE Computer Society Press, 1996.

[Smi81] J. E. Smith. A study of branch prediction strategies. In Proceedings of
the 8th annual symposium on Computer Architecture, pp. 135–148. IEEE
Computer Society Press, 1981.

[Smi82] J. E. Smith. Decoupled access/execute computer architectures. In Pro-
ceedings of the 9th annual symposium on Computer Architecture, pp. 112–
119. IEEE Computer Society Press, 1982.

[Smi84] J. E. Smith. Decoupled access/execute computer architectures. ACM
Trans Comput Syst, vol. 2(4):pp. 289–308, 1984.

[Smi87] J. E. Smith, G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, and C. M.
Rozewski. The zs-1 central processor. In Proceedings of the second inter-
national conference on Architectual support for programming languages
and operating systems, pp. 199–204. IEEE Computer Society Press, 1987.

[Soh90] G. Sohi. Instruction issue logic for high-performance, interruptible, mul-
tiple functional unit, pipelined computers. IEEE Transactions on Com-
puters, vol. 39(3), March 1990.

[Sol02] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level memory thread for
correlation prefetching. In Proceedings of the 29th annual international
symposium on Computer architecture, pp. 171–182. IEEE Computer So-
ciety, 2002.

[Tay02] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal.
The raw microprocessor: A computational fabric for software circuits and
general-purpose programs. IEEE Micro, vol. 22(2):pp. 25–35, 2002.

[Tay03] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal. Scalar operand
networks: On-chip interconnect for ilp in partitioned architectures. In Pro-
ceedings of the The Ninth International Symposium on High-Performance
Computer Architecture (HPCA’03), p. 341. IEEE Computer Society, 2003.

[Tay04] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt, B. Greenwald,
H. Hoffmann, P. Johnson, J. Kim, J. Psota, A. Saraf, N. Shnidman,

108 BIBLIOGRAPHY

V. Strumpen, M. Frank, S. Amarasinghe, , and A. Agarwal. Evaluation
of the raw microprocessor: An exposed-wire-delay architecture for ilp and
streams. In Proceedings of the 31st annual international symposium on
Computer architecture. IEEE Computer Society, 2004.

[Tes01] R. Tessier and W. Burleson. Reconfigurable computing for digital signal
processing: A survey. J VLSI Signal Process Syst, vol. 28(1-2):pp. 7–27,
2001.

[Tul95] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithread-
ing: maximizing on-chip parallelism. In Proceedings of the 22nd annual
international symposium on Computer architecture, pp. 392–403. ACM
Press, 1995.

[Wai97] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal.
Baring it all to software: Raw machines. Computer, vol. 30(9):pp. 86–93,
1997.

[Wal91] D. W. Wall. Limits of instruction-level parallelism. In Proceedings of the
fourth international conference on Architectural support for programming
languages and operating systems, pp. 176–188. ACM Press, 1991.

[Wir95] M. J. Wirthlin. A dynamic instruction set computer. In Proceedings of
the IEEE Symposium on FPGA’s for Custom Computing Machines, p. 99.
IEEE Computer Society, 1995.

[Wit96] R. Wittig and P. Chow. OneChip: An FPGA processor with reconfig-
urable logic. In K. L. Pocek and J. Arnold, editors, IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 126–135. IEEE Computer
Society Press, Los Alamitos, CA, 1996.

[Wul92] W. A. Wulf. Evaluation of the wm architecture. In Proceedings of the 19th
annual international symposium on Computer architecture, pp. 382–390.
ACM Press, 1992.

[Wul95] W. A. Wulf and S. A. McKee. Hitting the memory wall: implications of
the obvious. SIGARCH Comput Archit News, vol. 23(1):pp. 20–24, 1995.

[xil02] Virtex-II pro platform FPGAs: Functional description. Tech. Rep. DS083-
2, January 2002. Xilinx Corporation.

BIBLIOGRAPHY 109

[Yan00] C.-L. Yang and A. R. Lebeck. Push vs. pull: data movement for linked
data structures. In Proceedings of the 14th international conference on
Supercomputing, pp. 176–186. ACM Press, 2000.

[Ye00a] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee. CHIMAERA: A
high-performance architecture with a tightly-coupled reconfigurable func-
tional unit. In Proceedings of the 27th Annual International Symposium on
Computer Architecture, pp. 225–235. IEEE Computer Society and ACM
SIGARCH, Vancouver, British Columbia, Jun 12–14, 2000.

[Ye00b] Z. A. Ye, N. Shenoy, and P. Baneijee. A C compiler for a processor with a
reconfigurable functional unit. In Proceedings of the 2000 ACM/SIGDA
eighth international symposium on Field programmable gate arrays, pp.
95–100. ACM Press, 2000.

[Yeh91] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch prediction.
In Proceedings of the 24th annual international symposium on Microar-
chitecture, pp. 51–61. ACM Press, 1991.

[Zha98] Y. Zhang and G. B. Adams, III. Performance modeling and code partition-
ing for the ds architecture. In Proceedings of the 25th annual international
symposium on Computer architecture, pp. 293–304. IEEE Computer So-
ciety, 1998.

[Zie01] M. Ziegler and M. Stan. Optimal logarithmic adder structures with a
fanout of two for minimizing the area-delay product. In Proceedings of
the the International Symposium on Circuits and Systems. May 2001.

