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ABSTRACT

Inspired by recent advances in microprocessor performance
monitors, this paper shows how a shared-memory multipro-
cessor chipset and interconnect can be equipped with per-
formance monitors that associate performance events with
the PCs of the individual instructions causing these events.
Such monitors greatly simplify performance debugging of
shared-memory programs—for example, they make finding
pairs of instructions in false sharing straightforward. These
monitors also enable precise feedback-directed compiler op-
timizations and, as a second contribution, we show how they
can guide the code generator to use the version of the load
instruction that makes the best use of the coherence proto-
col. Experiments show up to almost 10% coherence traffic
reduction on SPLASH2 applications.
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1. INTRODUCTION

Performance monitors in microprocessors have proven to
be invaluable. They enable performance debugging tools
such as HP’s Caliper and Intel’s VTune, post-link binary op-
timizers [8] and feedback-directed compiler optimizations [2,
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5]. In fact, they are so popular that a library for portable
performance monitors was created [7]. In recent processors,
such as Itanium, monitors not only report which perfor-
mance events took place but also which instructions caused
them. On Itanium, these monitors rely on hardware coun-
ters called Event Address Registers (EARs) that provide
the program counter (PC) of the instruction causing a given
event, making them a precious tool for performance analysis.

This paper shows how the same capability can be ex-
tended to shared-memory multiprocessors, that is, how chip-
sets and interconnect fabrics can be equipped with perfor-
mance monitors that associate performance events with the
PCs of the individual instructions that originate the events.
We call these monitors SWIFT (System-Wide Information
for Tuning) monitors. QOur technique involves having pro-
cessors send out a unique instruction ID together with each
transaction. This ID comprises a processor 1D, a thread ID,
and the PC. Clearly, SWIFT monitors are only needed while
tuning performance and can be turned off during production
runs.

The benefits of correlating system-wide performance events
to originating instructions is intuitive. For example, con-
sider false sharing: it is very hard, even for the seasoned
programmer, to detect pairs of program statements that ac-
cess different data but compete for the same line. With
SWIFT monitors, identifying such pairs is straightforward.
This kind of performance analysis has been demonstrated,
for instance, by Nagarajan et al. [11]. However, they had to
resort to a software simulator for the lack of hardware sup-
port. This paper shows SWIFT monitors provide the same
information “natively.”

To further illustrate the benefits of SWIFT monitors, and
as a second contribution of this paper, we show how they can
guide instruction selection in a compiler or binary optimizer.
So far, when tuning a shared-memory application for perfor-
mance, the coherence protocol is often overlooked: modern
ISAs do provide special instructions to optimize against a
given protocol, but there is no mechanical way to know when
to use them; in other words, these instructions are mostly
used by expert library writers. One example of an instruc-
tion making use of the coherence protocol is Alpha’s whé4;
instructions that prefetch a line in exclusive state, as found
on Alpha, PA-RISC, [A-64 and probably others, are another
example. A third example is [A-64’s 1d.bias, which fetches
data and, on a cache miss, requests a private (a.k.a. exclu-



sive) copy of the line. Clearly, inappropriate use of 1d.bias
causes more transactions since shared copies must typically
be invalidated before providing the private copy, increasing
the latency of the load. These invalidations can also entail
higher cache miss rates, further degrading performance. As
a consequence, the code generator’s decision to select a reg-
ular load, a 1d.bias, or one of the other instructions listed
above should depend on the run-time behavior of references
to shared data-structures. But today’s compilers do not
have this information, explaining why these instructions are
found predominantly in hand-tuned libraries. SWIFT mon-
itors tackle this problem and allow the compiler to precisely
identify which static load instructions are better off being
replaced by a 1d.bias.

This paper is structured as follows. Section 2 describes the
coherence protocol we assume and explains where instruc-
tion selection comes into play. Section 3 presents hardware
extensions that enable SWIFT monitors. Section 4 then
shows one application of this capability, specifically, how a
compiler can unambiguously identify which loads should be
replaced by 1d.bias instructions. Section 5 describes our
experiments, in particular the simulator we used to validate
our architecture, and our experimental results. Finally, sec-
tion 6 discusses related work.

2. CACHE COHERENCE PROTOCOL

We assume a cc-NUMA shared-memory system similar to
the HP Superdome multiprocessor [14]. In particular, we as-
sume a directory-based system where the chipset is responsi-
ble for converting snoop requests emitted by processors into
directory-based requests, and vice-versa. To illustrate the
optimizations we have in mind, we pick the Itanium ISA.
As discussed earlier, this choice does not restrict our work
to this processor family.

From the perspective of a processor, a line can be in one of
four states: Modified (a.k.a. dirty), Exclusive (a.k.a. clean),
Shared or Invalid. Directory look-ups and updates for a
given line are handled by a single node (typically, an element
of the chipset) called the line’s home. From the home’s
perspective, the line can be in Idle state (indicating the line
is Invalid at all processors), Shared state, or Private state.
The Private State indicates the line is Modified or Exclusive
on a processor. Note that there is no need for home to
contrast Modified and Exclusive (i.e., to know whether the
line in Private state at the home is dirty or not at the owner
processor). We assume dirty sharing is not allowed, that is,
that there is at any time at most one processor owning the
line in Exclusive or Modified state.

The relevant part of our coherence protocol, which is an
enhanced version of the Superdome protocol, is described
below. On a read request from processor P1, the initiating
transaction sent by P1 is called READ_SHAR. Assume that the
cache line is currently Idle. From the target address, the
CEC attached to P1 knows which CEC is the home (H) to
which the transaction must be forwarded. H reads the direc-
tory entry for the line, and observes the line is Idle. It can
therefore reply to P1 immediately with a DATA_SHAR transac-
tion that gives the processor a Shared copy of the line. This
is the best possible scenario from the load’s standpoint since
only two transactions are necessary to service its request.

Now assume the target cache line is initially owned by
processor P2. This scenario is illustrated in Figure 1. P1’s
initial transaction T1 arrives at home H, which sends a

RECALL_PRIV (T2) to the owner and waits for response T3.
This response may be one of three kinds:

e If the line is Exclusive, P2 replies with RESP_SHAR,
which indicates it will share the line (in read-only mode)

with P1.

e If the line is Modified, P2 sends a RESP_DATA message
to send back the up-to-date line content to H and re-
linquish ownership.

Upon reception of P2’s response, H sends the data to P1 (in
a DATA_SHAR transaction) and adds P1 to the set of sharers.

Figure 1: Example of a read request invalidating an
exclusive copy

This protocol, however, is not best in all scenarios. To
see why, consider the code generated to increment a shared
variable: a load is followed by an add and a store to the
same target address. With our protocol, the processor doing
the increment may need to make two requests: one read-
only request to service the load (a READ_SHAR), and a second
(called READ_PRIV) to request a private copy to service the
store.

This is where judicious instruction selection helps. The
Itanium [SA comes with a special load instruction, 1d.bias,
that requests ownership at the same time as it fetches data.
In other words, if the line is in the processor’s caches, 1d.bias
behaves as a load; if the line isn’t, 1d.bias issues a READ_PRIV,
that is, the same request a store that misses generates. The
potential benefit of replacing a 14 followed by a store to the
same line by a 1d.bias is to reduce the total number of
transactions and therefore reduce bandwidth consumption.
Clearly, if a processor issues a load followed by a store, and
assuming the line is not in the cache before the load, two
coherence requests are needed. This results in at least 6
transactions: two to service the load and at least four to
service the store. In contrast, a 1d.bias generates a single
request and two transactions fewer than in the first scenario.

However, this replacement can negatively impact perfor-
mance and should be applied with care: on a regular load
and if the line is currently Shared, the requesting processor
is added to the set of sharers in both versions of the proto-
col. On a 1d.bias, however, shared copied are invalidated
to honor the “bias” request, and the 1d.bias can complete
only after all copies are invalidated (remember that this only
happens if the 1d.bias missed in the requestor’s cache).
Performance may therefore suffer both from the invalida-
tion of shared copies and from longer latency to service the
1ld.bias itself.

Our goal is to tell the compiler which loads are soon fol-
lowed by a store so that it selects the 1d.bias instruction
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Figure 2: Processor microachitectural extensions to send instruction IDs to the rest of the system (typically,
the front-side bus). Our extensions are in light gray. Elements shown in dark gray are already part of most

modern microarchitectures.

instead of the regular load. There are three hurdles, how-
ever: first, it is not clear what “soon” followed by a store
means. Second, even though increments and decrements are
cases where 1d.bias is beneficial, other cases exist. For ex-
ample, any load followed by a store, by the same processor,
to different data in the same line may be a good candidate
and probably should be granted ownership. And third, the
transformation should be conservative: replacing a load that
is never followed by a store to the same line would hurt per-
formance; when in doubt, keeping the regular load is best.

Instead of using heuristics, our approach is systematic. An
application is first run on extended hardware implementing
SWIFT monitors, described in Section 3. The run creates a
log that associates system transactions with the PCs of the
instructions that originate them. This information allows
the compiler to identify where it should generate 1d.bias
instructions instead of loads during the next compilation of
the application.

3. SYSTEM-WIDE INSTRUCTION-LEVEL
PERFORMANCE MONITORS

Implementing SWIFT monitors (z.e., native hardware sys-
tem-wide monitors at the granularity of instructions) re-
quires extensions to both the processor (the sending end)
and elements of the chipset (the receiving end) so that in-
struction identifiers are passed with each monitored transac-
tion. These extensions are described in Sections 3.1 and 3.2,
respectively. Please keep in mind that, in this paper, we
focus on only one phenomenon related to performance: co-
herence traffic. However, many other events (e.g., chipset
queues filling-up) could be of interest to performance tun-
ing. Finally, we address in Section 3.3 the issue of additional
bandwidth consumption.

3.1 Microprocessor Extensions

A simplified view of today’s processor microarchitecture
is shown by the dark gray elements shown in Figure 2. The
core pipeline, address translation (typically through a TLB),
the register files and multiple cache levels are well-known.
Also, to offer precise exceptions, some structure is needed to

save the PCs of all non-retired instructions. This structure is
implemented in various different ways, but even for microar-
chitectures that break instructions into micro-operations, it
conceptually boils down to a table of PCs that we call the
PC History Table. Executing a load instruction whose tar-
get address is contained in a register involves accessing the
register file, reading the (virtual) address, and sending that
address to the translation unit. Once translated into a phys-
ical address, the cache is accessed. (Translation and cache
access can in fact overlap, but this is irrelevant to our dis-
cussion.) If the cache miss, the address is sent to the outside
world. The outside world may be the front-side bus, or on-
die circuitry if all the above occurred in a single core.

The parts that belong to our extension are shown in light
gray in Figure 2. The goal of these extension is to create an
Extended Physical Address (EPA) that uniquely identifies
the instruction that originates the request throughout the
multiprocessor. The first step is to identify the threads and
the processor (and possibly the core) it is running on. As
shown in the figure, we assume identifying up to 8 threads
is enough. The thread ID thus takes 3 bits, which are un-
der software control. Additional status bits, whose count is
implementation-dependent, are also read to provide the pro-
cessor/core ID; setting these bits is under firmware control.

The PC of the instruction currently in the execute stage
of the pipeline is another element of the EPA. Finally, the
processor/core 1D, the thread ID, the PC and the virtual
target address are concatenated to form the extended vir-
tual address. The extended virtual address (and later the
EPA) uses the address path that goes to the TLB and to
the various cache, with the understanding that the high-
order bits that constitute the extension should be ignored
by the memory hierarchy before they reach the chipset. The
address paths only needs to be widened.

Also of note, the EPA keeps all bits of the physical tar-
get address; in contrast, a few low-order bits are usually
stripped since only the address of the cache line is passed to
a cache, or when a memory read is initiated. Adding these
bits do not change the operation of caches or memory sys-
tems, which should ignore these bits. These bits are only



used for performance monitoring.

Since these microprocessor extensions are mostly needed
during performance tuning, a status bit under software con-
trol (not shown in Figure 2) is added to turn this feature on
and off. When this status bit is on, transactions sent to the
bus contain instruction IDs and the chipset is requested to
monitor them in the way described in the following section.

3.2 Chipset Extensions

The shared address space is usually interleaved across the
homes. Some address bits, typically the lowest-order ones,
determine which memory controller is the line’s home. In
the proposed architecture, the line’s home saves the EPA of
each monitored transaction it receives. It saves this infor-
mation in a buffer that could be on the controller chip, or
in main memory. This buffer clearly has finite capacity, and
data for a new transaction overwrites that of the oldest one
in a circular fashion. It is the responsibility of software to
sample this buffer when it sees fit. In this work, software
concatenates buffer contents into a request log. Having mul-
tiple request logs, one per home, is OK since this would still
ensure that requests corresponding to a given cache line are
in the same log (since they are all directed to the same home
memory controller) and that requests are logged in arrival
order. As a result, running an application generates a log
that contains, for the requests that were sampled, the EPA
(originating processor, originating PC, and target address)
and the type of the initial transaction. A snippet of a typical
request log is shown in Table 1. For expository reasons, the
logs shown in this paper also show line addresses following
the EPA; this is clearly redundant, since line addresses can
be derived from target addresses.

Observe that false and true sharing can easily be detected
from these logs. The size of each request is not indicated in
logs but is provided by each originating instructions, whose
PC are provided.

3.3 Bandwidth Considerations

In the worst case, system-wide monitors require sending
at most 73 additional bits with each request message initi-
ated by a processor: 64 bits for the PC, 3 for the thread ID,
and 6 for the processor ID assuming a 64-way multiproces-
sor. (Note that response messages do not need to be tagged
with this information.) We believe that this overhead is ac-
ceptable: as a point of comparison, coherence messages in
Superdome are 16 to 144 byies long. Moreover, many bits
on the Itanium 2 front-side bus are typically unused; for
instance, out of the train of 128 bits carried at each transac-
tion of the Itanium front-side bus, 23 bits are either unused,
reserved for future use, or used for debugging. These bits
could be used to carry part of the EPA at no cost to the
front-side bus bandwidth.

Another possibility to dramatically reduce the additional
payload is to hash the PC so as to leverage the sparsity of
instruction addresses. PCs of interest are sparse because
the relevant instructions are only those that may be seen
by the rest of the system (typically, loads and stores). The
structure of PCs can also be exploited by careful hashing:
an instruction PC typically begins with a few (typically,
4) highest-order bits that differ depending on whether ker-
nel, shared-library and application code is executing; for
most applications, the bits are followed by several zeros be-
fore lower-order bits become significant. A possible hashing

scheme would cut a 64-bit PC in three segments: the four
high-order bits, the 51 middle bits coming next, and the 9
lowest-order bits. The high and low segments are kept un-
modified. The middle segment is itself cut in three 17-bit
vectors, and these three vectors are XORed bitwise. The 64-
bit PC is thus hashed into a 30-bit vector, reducing the EPA
overhead to 39 bits down from 73. This hashing scheme is
illustrated in Figure 3.

Processor/ | | }
Core ID \-t ‘ ‘
| | Virtual Addre
Thread ID |
[ N N
[ N N N
P ) )
N
PC of instruction 77
in EXE stage

Figure 3: The PC of the instruction can optionnally
be hashed. This figure details how the relevant part
of Figure 2 is modified.

Software postprocessing is required to reconstruct the com-
plete actual PCs. However, and assuming the hashing scheme
described above, this reconstruction is straightforward if
code size does not exceed 64 MB: If the first two 17-bit
segments are known quantities (for example, they are all
zeros), then the hashed PC immediately gives the value of
the third 17-bit segment of the actual PC. That and the 9
lowest-order bits provide 26 bits, enough to uniquely encode
all PCs without hashing collision up to 64 MB of text.

Let’s now assume code size exceeds 64 MB. For a given
hashed PC in the request log, software postprocessing has to
consider all actual PCs that can be hashed into that value. If
a collision occurs and an ambiguity arises between two loads
or two stores!, software may be able to lift the ambiguity
by looking at other transactions immediately preceding or
following the ambiguous one. In the worst case, minimal
modification of the code (such as inserting a no-op) is enough
to avoid that collision in a second run.

Finally, please keep in mind that sending out EPAs is only
needed in performance tuning, not production runs.

4. COMPILER FEEDBACK

A compiler can leverage the hardware extensions of Sec-
tion 3 by “mining” request logs, which hardware generated
during a first execution, and by adapting its code genera-
tion accordingly. This section details one specific example,
which allows the compiler to identify which 1d instructions
would benefit from being replaced by a 1d.bias. Section 4.1
details the mining process, and Section 4.2 specifies how in-
struction selection is performed.

4.1 Postprocessing of Request Logs

If the PCs of a load and a store are hashed to the same
value, the type of the transaction seen by the chipset will
disambiguate them.



109,1,1,0x4008b80,0xab02380,0xab02380,READ_SHAR
110,3,1,0x4008120,0xab02408,0xab02400,READ_SHAR
111,1,1,0x4008b90,0xab0238c,0xab02380,READ_PRIV

Table 1: Fragment of an unsorted request log. Each row corresponds to a request. The first entry is the
request number, which is shown only for expository reasons. Then come the ID of the processor placing the
request, the thread ID, the instruction PC and the target address, these three entries making up the EPA.
The fifth entry is the cache line address, followed by the initiating transaction.

109,1,1,0x4008b80,0xab02380,0xab02380,READ_SHAR
111,1,1,0x4008b90,0xab0238c,0xab02380,READ_PRIV

110,3,1,0x4008120,0xab02408,0xab02400,READ_SHAR

Table 2: Request log of Table 1, after sorting. Transaction 111 is now right after 109. Transaction 110 is now
in the portion of the log related to the line at address 0xab02400.

To identify load instructions that are candidate for re-
placement by a 1d.bias, the compiler (or any other soft-
ware) sorts the request log by address and, as the second
criterion, by request number. This is illustrated in Table 2:
the rows for Requests 109 and 111, that were apart in Ta-
ble 1, are now consecutive The compiler then looks for pairs

of req,lf,%sts such th

e second request immediately follows the first in the
sorted request log,
e Both request refer to the same cache line,
e Both requests come from the same processor,
e The first request is a READ_SHAR and the second a
READ_PRIV.
This filter identifies which loads the next compiler run should
consider for replacement: these loads are immediately fol-
lowed by a request for ownership (a store) issued by the same
processor. For any such pair of requests, the PC recorded
with the READ_SHAR request is that of a load that the com-
piler may want to convert into a 1d.bias. Looking again at
Table 2, the filter identifies Requests 109 and 111 as being
such a pair because the processor that issues them is the
same (processor 1, second entry), their cache line addresses
are equal, and their types match the last filter criterion.

4.2 Code Generation

Given the PC of an instruction, the relevant load instruc-
tion can easily be identified and replaced by a 1d.bias. The
target address, predicate, and possibly the post-increment
of the original load do not change. We call this optimization
LDBIAS.

Note that another approach could be to generate prefetch
instructions with request for exclusive access (7.e., using the
TA-64 1fetch.excl instruction). However, we want in this
paper to carefully separate the benefits of prefetching with
that of our optimizations.

However, this simple strategy does not work when the load
is a control- or data-speculative load (1d.s and 1d.a, resp.),
a load check (1d.c), a load with acquire semantics (1d.acq),
or any of their architected combinations. This is because the
TA-64 architecture does not provide a “bias” version of these
instructions. In such cases, one option would have been to
modify other aspects of the compiler, possibly overturning
some of its decisions, such as the decision of speculating a
load. But again, this would defeat the purpose of evaluating
our technique in isolation from other optimizations. There-
fore, even though these load flavors are often identified as

targets for substitution by a 1d.bias, we leave them un-
touched, knowingly leaving some performance on the table.

The situation is more complicated for floating-point loads,
because the IA-64 architecture does not provide a “bias” ver-
sion of these loads. Therefore, when a floating-point load is
identified by the request log, we insert a dummy 1d.bias
using the same address register as the floating-point load,
right before that floating-point load; it’s a dummy load in
the sense that the content of its destination register is dis-
carded?. We call this optimization FPBIAS.

5. EXPERIMENTS

We first describe our methodology, in Section 5.1, then
present in Section 5.2 the experimental results.

3.1 Simulation Infrastructure

We simulated the hardware extensions of Section 3 on
HP’s reference multiprocessor simulator, which has been val-
idated in numerous internal studies. This system simulator
faithfully simulates each chip in a Superdome multiproces-
sor, including each processor. That is, each processor imple-
mentation has its corresponding processor simulator, which
is microarchitecture-accurate. The system simulator runs
any piece of software the actual hardware can; in particular,
it executes unmodified Superdome firmware and boots the
various available operating systems. In our simulations, we
run HP-UX 11.23 running on top of Itanium 2 processors
with 256kB second-level caches and 3MB third-level caches.

The system simulator is a functional simulator and thus
does not provide cycle counts. However, it does provide good
performance indicators for system-wide events, which are
those of interest in this paper, such as counts of transactions
generated by each request. This methodology has been suc-
cessfully used in other papers using functional simulators—
see for instance [10].

5.2 Experimental Results

For our experiments, we use the SPLASH-2 suite [16]. For
each benchmark, we had to define which input set we use to
generate the request log, and which one we use to measure

®Note that we cannot insert a dummy 1ld.bias before a
1d.s, 1d.a, 1ld.c, or acquire loads instruction (or any
floating-point equivalent) since the new instruction would
change the program’s semantics even if both instructions
target the same address.



performance improvement. Typically, the first data set is
small and used to train the compiler and the second is a
large set representing a more realistic workload. Reusing
the SPEC terminology, we’ll call them the “train” and “ref”
sets, respectively. For each of the benchmarks, the ref data
set we use is the default input file or the default values of the
parameters (except for the number of processors, which is
always four in our experiments). The train sets we selected
are given in Table 3, together with a rationale for these
choices.

Table 4 reports absolute counts of transactions generated
to service all application requests, in three different cases:
(A) the unmodified binary run on (simulated) hardware
equipped with EPAs and SWIFT monitors; (B) the binary
modified by applying LDBIAS (s.e., after integer loads iden-
tified by run A are replaced by 1d.bias instructions); and
(C), where both LDBTAS and FPBIAS are applied. Runs
B and C don’t need SWIFT monitors. As can be seen, ap-
plication transaction counts are reduced by at least 2.5%
and up to almost 10% on real applications. These gains
are not due to the EPAs being off in runs B and C since
Table 4 reports absolute transaction counts, not bandwidth
consumption—these counts are the same with EPAs on.

To appreciate the performance improvement brought by
such a traffic reduction, please keep in mind that each trans-
action corresponds a processor-to-home or home-to-processor
communication, and that in large multiprocessors (64-way
and up) the latency of each of these communications is in
the order of a hundred processor cycles. Latencies as high
as those are difficult to hide by the compiler or the proces-
sor. Even worse, the latency of coherence traffic on synchro-
nization variables cannot be reduced much by prefetching,
because prefetching won’t prevent data races. To top it off,
synchronizations block the processor from modifying shared
data and, in practice, often stall it.

Second, we observe that floating-point benchmarks bene-
fit from our optimization even when only integer loads are
replaced. This is because most of these loads access synchro-
nization variables, such as those used to implement barriers,
and therefore have a large impact on coherence traffic.

As mentioned earlier, we must keep an eye on other per-
formance indicators to make sure nothing went wrong else-
where. To that purpose, Table 5 reports absolute counts
of transactions needed to service application loads (z.e., a
subset of the transaction counted in Table 4). Transactions
generated by 1d.bias instructions are counted in this table.
The risk was indeed that too many 1d.bias instructions in-
validate other processors’ copies and generate more load re-
quests. As Table 5 shows, load transaction counts are in fact
reduced more often than they are increased, and are never
increased by more than 1.2%. Another performance indica-
tor is cache misses. Table 6 reports the absolute counts of
L3 misses in each case. As can be seen, miss rates are not
impacted much.

5.3 Code Analysis

Looking at code snippets sheds light on why the feedback
provided by SWIFT monitors guide compilers beyond the
obvious case of increments/decrements to shared variables.

Consider the following loop from RADIX, found at lines
518 through 522 in file radix.C. (In the Splash2 suite, files
with .C extensions are preprocessed into .c files after expan-
sion of platform-dependent macros.)

for (i=key_start;i<key_stop;i++) {
my_key = key[0][i] & bb;
my_key = my_key >> shiftnum;
rank_me_mynum[my_key]++;

// Line 519

}

Some instances of the load at line 519 are identified by
SWIFT monitors as followed by a store to the same cache
line, in line 641:

for (i = key_start; i < key_stop; i++) {
this_key = key[0][il & bb;
this_key = this_key >> shiftnum;
tmp = rank_ff_mynum[this_key];
key[1] [tmp] = key[0]1[il;
rank_ff_mynum[this_key]++;

// Line 641

}

To show the impact our method can have, we replaced a
single load, that of key[0][i] at line 519, by a 1d.bias
and ran that binary. We observed 103,550 total application
transactions (a 1.8% improvement over the unmodified ap-
plication) and 8,928 load transactions. Replacing this single
static load therefore accounts for most of the gains we got.
We believe that static compiler analyses would have a hard
time identifying the interaction between the load at Line 519
and the store at line 641. In contrast, the feedback provided
by SWIFT monitors makes it straightforward.

We also wanted to know if run-time feedback was re-
ally necessary to identify loads that should be turned into
1d.bias instructions. To that purpose, we evaluated a purely
static approach: whenever a field of RADIX’s global data
structure was syntactically incremented or decremented us-
ing the ++ or —— operator, we replaced the corresponding
load by a 1d.bias. We didn’t change any other 1d instruc-
tion. The result was insignificant improvements in either
transaction counts or counts of transactions servicing loads.
This indicates that, in RADIX at least, statically obvious in-
crements/decrements account for relatively few READ_SHAR-
READ_PRIV sequences and thus offer little opportunity for
improvement.

6. RELATED WORK

Some performance monitors are provided in Superdome
and other platforms, such as the Sun Fire interconnect [12],
but the information they provide is not at the granularity
of individual instructions. As noted earlier, the goal of this
work is to extend these multiprocessor performance moni-
tors with features closer to that of Event Address Registers
(EARs) found on Ttanium. EARs can guide the compilation
of sequential code [2, 5], and even though these papers tackle
performance issues that are totally different from ours, they
all rely on performance monitors at the granularity of in-
structions.

To improve the performance of directory-based protocols,
most of the literature focuses on destination-set prediction [1,
4, 9]. We clearly follow a totally different approach that has,
to the best of our knowledge, never been explored. We ex-
pect the LDBIAS and FPBIAS optimizations are compatible
with destination set prediction.

In the Check-In Check-Out (CICO) programming model
[3], programmer-supplied annotations tell the protocol when
exclusive or share access to a line should be expected (Check-
Out), or when a line can be relinquished (Check-In). Check-

Out for exclusive access is similar to a 1d.bias; however,



Benchmark Ref Set Train Set Comments

FET -m10 -m4 P=4 processors and M must be such that 2*/2 > P.
LU -n128 -b16 -nl6 -b16 16 is smallest possible value for N given B.
CHOLESKY tk29.0 tk23.0 tk23.0 is smallest provided input file except wr10.0,
but wr10.0 gave an “Overflow” message.
RADIX -n262144 -n16384
BARNES 16384 particles | 1024 particles
RAYTRACE balls4.geo teapot.geo teapot smallest provided geometry file.
WATER-SPATTAL | 512 molecules 64 molecules Fewer molecules would require reducing cutoff value of 6.2A.
VOLREND head.den head-scaleddown4.den

Table 3: Ref and train input sets for the different benchmarks

Benchmark Unmodified | LDBIAS | Improvement | LDBIAS + | Improvement
Binary FPBIAS

FFT 4,108 3,936 4.2% 3,821 7.0%

LU 196,530 192,622 2.0% 188,732 4.0%

CHOLESKY 385,186 365,010 5.2% 360,475 6.4%

RADIX 105,468 102,256 3.0% 102,256 3.0%

BARNES 1,971,764 | 1,944,422 1.4% 1,889,776 4.2%

RAYTRACE 847,122 768,800 9.2% 768,800 9.2%

WATER-SPATIAL 128,766 125,818 2.3% 125,502 2.5%

VOLREND 543,110 489,666 9.8% 489,666 9.8%

Table 4: Counts of application transactions. No opportunity for FPBIAS were identified in RADIX, RAY-
TRACE and VOLREND.

Benchmark Unmodified | LDBIAS | Variation | LDBIAS + | Variation
Binary FPBIAS

FFT 1,506 1,468 2.5% 1,462 2.9%

LU 86,056 | 85,630 0.5% 85,431 0.7%

CHOLESKY 105,839 104,361 1.3% 105,003 0.8%

RADIX 9,070 8,910 1.7% 8,910 1.7%

BARNES 942,122 932,842 0.9% 930,506 1.2%

RAYTRACE 480,134 486,350 -1.2% 486,350 -1.2%

WATER-SPATIAL 70,026 70,740 -1.0% 70,756 -1.0%

VOLREND 473,712 478,878 -1.0% 478,878 -1.0%

Table 5: Counts of application transactions servicing loads. Positive variations are improvements.

Benchmark Unmodified | LDBIAS | Variation | LDBIAS + | Variation
Binary FPBIAS

FET 943 962 -2.0% 943 0.0%

LU 45,400 | 45,129 0.6% 45,334 0.1%

CHOLESKY 56,912 | 57,384 0.8% 56,998 0.1%

RADIX 25,676 | 25,442 0.9% 25,442 0.9%

BARNES 473,565 468,296 1.1% 474,401 -0.2%

RAYTRACE 318,620 313,699 1.5% 313,699 1.5%

WATER-SPATIAL 36,111 35,450 1.8% 35,605 1.4%

VOLREND 224,517 222,057 1.0% 222,057 1.0%

Table 6: L3 miss counts. Each L3 miss results in two or more transactions. Positive variations are improve-
ments.



CICO requires user annotations, whereas our method is en-
tirely automatic. Finding beneficial locations for a Check-
Out may be straight-forward in simple cases (such as in-
crements of shared data structures) but hard when, for in-
stance, false sharing occurs.

The Write-Through primitive of [6] is similar to Check-
Out. Moreover, even though [6] does not perform opti-
mizations similar to using 1d.bias, it does rely on a com-
piler to insert Write-Through’s. However, their paper relies
on static analysis of references (typically, affine array sub-
scripts), whereas our method relies on more precise run-time
feedback.

In [10], McCurdy and C. Fischer show how new types of
load instruction (called 1dp and 1d+) together with a modi-
fied MSI protocol significantly reduce coherence traffic. Our
use of 1d.bias is similar in spirit, but we showed it can be
automated using SWIFT monitors.

Closer to our work is a recent paper by Nagarajan et
al. [11]. In that work, a system simulator is used to col-
lect run-time information and identify performance issues.
Using a simulator provides at least as much information as
SWIFT monitors do, at the cost of lower accuracy and much
slower speed.

Finally, let us note that system-wide performance mon-
itoring has also been recently investigated in [13, 15], al-
though their work does not correlate events to instructions.

7. CONCLUSION

We introduced SWIFT monitors, which capture perfor-
mance events in a shared-memory system and associate them

with unique identifiers of the instructions that generate them.

In this paper, we limited ourselves to SWIFT monitors re-

porting coherence traffic, but many other performance-impacting

events could be monitored the same way. Because the granu-
larity of SWIFT monitors is that of individual instructions,
performance debugging is eased tremendously; this gran-
ularity also enables run-time information to be fed back
to compilers, and we introduced a new optimization based
on such a feed-back. This compiler optimization leverages
SWIFT monitors to decide, at each individual memory ref-
erence, which version of the load instruction makes the best
use of the coherence protocol. Experiments on the HP ref-
erence simulator showed that this optimization reduces co-
herence traffic by up to almost 10% on real applications, the
smallest observed improvement being 2.5%.

SWIFT monitors do require extending processor and chipset

microarchitectures and the front-side bus protocol. How-
ever, each party (microprocessor or chipset) is free to honor
this extension or not. For example, an entry-level proces-
sor may not offer this feature, while a server-class processor
might. Symmetrically, a chipset manufacturer could differ-
entiate its different chipsets partly based on the extent of
their support for SWIFT monitors. An alternative solution
could be to use a software simulator to gain similar informa-
tion, but this approach may not be palatable in an industrial
environment. In contrast, for middle- and high-end servers,
we believe hardware SWIFT monitors would tremendously
simply the fine-tuning of critical, complex applications.
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